Research Article
BibTex RIS Cite

Poli(sodyum 4-stiren sülfonat) Kaplı SnO2 Nanoparçacıklarının Sentezi, Karakterizasyonu ve Gaz Algılama Özelliklerinin İncelenmesi

Year 2019, Issue: 17, 412 - 422, 31.12.2019
https://doi.org/10.31590/ejosat.617383

Abstract

Bu çalışmada, poli(etilen glikol)(PEG)-Kalay Oksit/poli(sodyum 4-stiren sülfonat) PEG-SnO2/PSS nanokompozitleri, 2 saat boyunca dimetil formamid (DMF) varlığında hidrotermal işlemle hazırlandı. Bunun için yüzey aktif madde PEG ile birlikte daha önceden sentezlenmiş olan 16,4 nm büyüklüğündeki SnO2 nanoparçacıkları kullanıldı. PEG-SnO2/PSS nanokompoziti, PSS ve PEG-SnO2 ile birlikte DMF varlığında 0°C reaksiyon sıcaklığında 2 saat sürede sentezlendi. Hazırlanan PEG-SnO2/PSS nanokompozitinin yapısal ve elementel analizi, taramalı elektron mikrokopisi (SEM), Enerji Dağılım X-Işınları Spektrometresi (EDS), X-ışını difraksiyonu (XRD) ve Fourier transform infrared (FTIR) spektroskopisi teknikleri ile yapıldı. FTIR ve XRD analizleri SnO2 nanoparçacıklarının PSS polimer yapısına katıldığını gösterirken, SEM ve EDS analizleri SnO2 nanoparçacıklarının morfolojik yapısının, PSS ile kompozitleri hazırlandığında PSS polimeri ile kapsüllenerek nanoyapıdan mikroküre yapılara dönüştüğünü gösterdi. Ayrıca, sonuçlar, PEG-SnO2 yüzeyinin, güçlü π-π etkileşimleri altında PSS ile % 39,53'lük bir kapsülleme oranı ile kaplandığını gösterdi. Bu örneklerin amonyak, etanol, aseton, formaldehit ve kloroform gibi uçucu organik bileşen (VOC) buharlarına karşı gaz duyarlılıkları, oda sıcaklığında, iki probe tekniği ile elektrometre kullanılarak incelendi. PEG-SnO2 nanoparçacıklarının etanol gazı için yüksek algılama performansı sergilediği görüldü. Saf olarak kullanılan PSS, VOC gazlarının hepsine karşı yüksek oranda duyarlılık gösterdi. Deney sonuçlarına göre, PSS ile kapsüllenen PEG-SnO2 nanokompozitinin gaz sensörü malzemesi olarak kullanım potansiyelinin arttırılabildiği söylenebilir.

Supporting Institution

Cumhuriyet Üniversitesi

Project Number

M-616

Thanks

Bu çalışma, Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) Komisyonu tarafından M-616 Nolu proje kapsamında desteklenmiştir.

References

  • Adamczyk, Z., Jachimska, B., Jasiński, T., Warszyński, P., & Wasilewska, M. (2009). Structure of poly (sodium 4-styrenesulfonate) (PSS) in electrolyte solutions: Theoretical modeling and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 343(1–3), 96–103. https://doi.org/10.1016/j.colsurfa.2009.01.035
  • Adnan, R., Razana, N. A., Rahman, I. A., & Farrukh, M. A. (2010). Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene. Journal of the Chinese Chemical Society, 57(2), 222–229. https://doi.org/10.1002/jccs.201000034
  • Andre, R. S., Chen, J., Kwak, D., Correa, D. S., Mattoso, L. H. C., & Lei, Y. (2017). A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature. Synthetic Metals, 233(July), 22–27. https://doi.org/10.1016/j.synthmet.2017.08.005
  • Andre, R. S., Pereira, J. C., Mercante, L. A., Locilento, D., Mattoso, L. H. C., & Correa, D. S. (2018). ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): Evaluation of humidity sensing properties. Journal of Alloys and Compounds, 767, 1022–1029. https://doi.org/10.1016/j.jallcom.2018.07.132
  • Athawale, A. A., & Kulkarni, M. V. (2000). Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors and Actuators, B: Chemical, 67(1), 173–177. https://doi.org/10.1016/S0925-4005(00)00394-4
  • Boran, F. (2016). Grafen- İnorganik Nanokompozitlerinin Hazırlanması, Karakterizasyonu ve Gaz Sensör Özelliklerinin İncelenmesi. Cumhuriyet Üniversitesi.
  • Boran, F., & Çetinkaya, S. (2016). Influence of Reaction Time on the Size of SnO 2 Nanospheres and Its Sensing Properties to VOC Gases. International Journal of Biological and Medical Science, 1(2), 1–4. Retrieved from http://iakkurt.dergipark.gov.tr/ijbimes
  • Boran, F., & Çetinkaya, S. (2017). Synthesis, characterization and sensing behavior of WO3 nanocrystalline powder for toluene vapor. Acta Physica Polonica A, 132(3). https://doi.org/10.12693/APhysPolA.132.572
  • Boran, F., Çetinkaya, S., & Şahin, M. (2017). Effect of surfactant types on the size of tin oxide nanoparticles. Acta Physica Polonica A, 132(3), 546–548. https://doi.org/10.12693/APhysPolA.132.546
  • Du, A. K., Yang, K. L., Zhao, T. H., Wang, M., & Zeng, J. B. (2016). Poly(sodium 4-styrenesulfonate) wrapped carbon nanotube with low percolation threshold in poly(ε-caprolactone) nanocomposites. Polymer Testing, 51, 40–48. https://doi.org/10.1016/j.polymertesting.2016.02.008
  • Farrukh, M. A., Heng, B. T., & Adnan, R. (2010). Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods. Turkish Journal of Chemistry, 34(4), 537–550. https://doi.org/10.3906/kim-1001-466
  • Fenoy, G. E., Schueren, Benoit Van der Scotto, J., Boulmedais, F., Ceolín, M. R., Bégin-Colin, S., Bégin, D., & Marmisollé, Waldemar A. Azzaroni, O. (2018). Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochimica Acta, 283, 1178–1187. https://doi.org/10.1016/j.electacta.2018.07.085
  • Firooz, A. A., Mahjoub, A. R., & Khodadadi, A. A. (2011). Hydrothermal synthesis of ZnO/SnO2 nanoparticles with high photocatalytic activity. World Academy of Science, Engineering and Technology, 76(4), 138–140.
  • Guo, Q., & Li, M. (2016). Electrodeposition of poly(sodium 4-styrenesulfonate)-silver nanocomposites for electrochemical detection of H2O2. International Journal of Electrochemical Science, 11(9), 7705–7713. https://doi.org/10.20964/2016.09.14
  • Kondawar, S. B., Agrawal, S. P., Nimkar, S. H., Sharma, H. J., & Patil, P. T. (2012). Conductive polyaniline-tin oxide nanocomposites for ammonia sensor. Advanced Materials Letters, 3(5), 393–398. https://doi.org/10.5185/amlett.2012.6361
  • Li, L., Ferng, L., Wei, Y., Yang, C., & Ji, H. F. (2012). Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. Journal of Colloid and Interface Science, 381(1), 11–16. https://doi.org/10.1016/j.jcis.2012.05.004
  • Lucattini, L., Poma, G., Covaci, A., de Boer, J., Lamoree, M. H., & Leonards, P. E. G. (2018). A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere, 201, 466–482. https://doi.org/10.1016/j.chemosphere.2018.02.161
  • Mirza, A. Z., & Shamshad, H. (2019). Fabrication and characterization of doxorubicin functionalized PSS coated gold nanorod. Arabian Journal of Chemistry, 12(1), 146–150. https://doi.org/10.1016/j.arabjc.2014.08.009
  • Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Preparation and characterization of SnO2 nanoparticles by hydrothermal route. International Nano Letters, 2(1), 2–6. https://doi.org/10.1186/2228-5326-2-17
  • Shi, P. W., Li, Q. Y., Li, Y. C., & Wu, C. F. (2014). Preparation and characterization of poly(sodium 4-styrenesulfonate)-decorated hydrophilic carbon black by one-step in situ ball milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 135–140. https://doi.org/10.1016/j.colsurfa.2013.10.060
  • Tran, M. H., Yang, C. S., & Jeong, H. K. (2016). Fast and economical reduction of poly (sodium 4-styrene sulfonate) graphite oxide film by plasma. Electrochimica Acta, 196, 769–774. https://doi.org/10.1016/j.electacta.2016.03.004
  • Weschler, C. J. (2009). Changes in indoor pollutants since the 1950s. Atmospheric Environment, 43(1), 153–169. https://doi.org/10.1016/j.atmosenv.2008.09.044Yu, H. W., Kim, H. K., Kim, T., Bae, K. M., Seo, S. M., Kim, J. M., … Kim, Y. H. (2014). Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate). ACS Applied Materials and Interfaces, 6(11), 8320–8326. https://doi.org/10.1021/am501151v
  • Zamand, N., Pour, A. N., Housaindokht, M. R., & Izadyar, M. (2014). Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method. Solid State Sciences, 33, 6–11. https://doi.org/10.1016/j.solidstatesciences.2014.04.005
  • Zhang, L., Xu, Z., & Dong, S. (2006). Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+ and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Analytica Chimica Acta, 575(1), 52–56. https://doi.org/10.1016/j.aca.2006.05.069
  • Zhang, Z., & Xu, X. (2014). Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism. Chemical Engineering Journal, 256, 85–92. https://doi.org/10.1016/j.cej.2014.06.020
  • Zhao, B., Zhang, G., Song, J., Jiang, Y., Zhuang, H., Liu, P., & Fang, T. (2011). Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta, 56(21), 7340–7346. https://doi.org/10.1016/j.electacta.2011.06.037

Synthesis, Characterization and Investigation of Gas Sensing Properties of Poly (sodium 4-styrene sulfonate)-Decorated SnO2 Nanoparticles

Year 2019, Issue: 17, 412 - 422, 31.12.2019
https://doi.org/10.31590/ejosat.617383

Abstract

In this study, polyethylene glycol (PEG)-Tin Oxide/Poly(sodium 4-styrene sulfonate) (PEG-SnO2/PSS) nanocomposites were prepared by hydrothermal method in the presence of dimethyl formamide (DMF) for 2 hours. For this purpose, SnO2 nanoparticles of 16.4 nm size previously synthesized using PEG as a surfactant were used. The PEG-SnO2/PSS nanocomposite was synthesized with PSS and PEG-SnO2 in the presence of DMF at a reaction temperature of 0°C for 2 hours. The morphology and elemental analysis of PEG-SnO2/PSS nanocomposite were analyzed by scanning electron microcopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. FTIR and XRD analyzes showed that SnO2 nanoparticles were incorporated into the PSS polymer structure, while SEM and EDS analysis showed that the morphological structure of SnO2 nanoparticles was transformed from nanostructures into microsphere by encapsulating them with PSS polymer. Also, the results showed that the PEG-SnO2 surface was coated with PSS at an encapsulation rate of 39.53% under strong π-π interactions. Gas sensitivities of these samples against volatile organic compound (VOC) vapors such as ammonia, ethanol, acetone, formaldehyde and chloroform were investigated by two probe techniques using electrometer at room temperature. PEG-SnO2 nanoparticles showed high detection performance for ethanol gas. The pure PSS illustrated a high level of sensitivity to all VOC gases. According to the experimental results, it can be said that the PEG-SnO2 nanocomposite encapsulated by PSS can be used as a gas sensor material.

Project Number

M-616

References

  • Adamczyk, Z., Jachimska, B., Jasiński, T., Warszyński, P., & Wasilewska, M. (2009). Structure of poly (sodium 4-styrenesulfonate) (PSS) in electrolyte solutions: Theoretical modeling and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 343(1–3), 96–103. https://doi.org/10.1016/j.colsurfa.2009.01.035
  • Adnan, R., Razana, N. A., Rahman, I. A., & Farrukh, M. A. (2010). Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene. Journal of the Chinese Chemical Society, 57(2), 222–229. https://doi.org/10.1002/jccs.201000034
  • Andre, R. S., Chen, J., Kwak, D., Correa, D. S., Mattoso, L. H. C., & Lei, Y. (2017). A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature. Synthetic Metals, 233(July), 22–27. https://doi.org/10.1016/j.synthmet.2017.08.005
  • Andre, R. S., Pereira, J. C., Mercante, L. A., Locilento, D., Mattoso, L. H. C., & Correa, D. S. (2018). ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): Evaluation of humidity sensing properties. Journal of Alloys and Compounds, 767, 1022–1029. https://doi.org/10.1016/j.jallcom.2018.07.132
  • Athawale, A. A., & Kulkarni, M. V. (2000). Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors and Actuators, B: Chemical, 67(1), 173–177. https://doi.org/10.1016/S0925-4005(00)00394-4
  • Boran, F. (2016). Grafen- İnorganik Nanokompozitlerinin Hazırlanması, Karakterizasyonu ve Gaz Sensör Özelliklerinin İncelenmesi. Cumhuriyet Üniversitesi.
  • Boran, F., & Çetinkaya, S. (2016). Influence of Reaction Time on the Size of SnO 2 Nanospheres and Its Sensing Properties to VOC Gases. International Journal of Biological and Medical Science, 1(2), 1–4. Retrieved from http://iakkurt.dergipark.gov.tr/ijbimes
  • Boran, F., & Çetinkaya, S. (2017). Synthesis, characterization and sensing behavior of WO3 nanocrystalline powder for toluene vapor. Acta Physica Polonica A, 132(3). https://doi.org/10.12693/APhysPolA.132.572
  • Boran, F., Çetinkaya, S., & Şahin, M. (2017). Effect of surfactant types on the size of tin oxide nanoparticles. Acta Physica Polonica A, 132(3), 546–548. https://doi.org/10.12693/APhysPolA.132.546
  • Du, A. K., Yang, K. L., Zhao, T. H., Wang, M., & Zeng, J. B. (2016). Poly(sodium 4-styrenesulfonate) wrapped carbon nanotube with low percolation threshold in poly(ε-caprolactone) nanocomposites. Polymer Testing, 51, 40–48. https://doi.org/10.1016/j.polymertesting.2016.02.008
  • Farrukh, M. A., Heng, B. T., & Adnan, R. (2010). Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods. Turkish Journal of Chemistry, 34(4), 537–550. https://doi.org/10.3906/kim-1001-466
  • Fenoy, G. E., Schueren, Benoit Van der Scotto, J., Boulmedais, F., Ceolín, M. R., Bégin-Colin, S., Bégin, D., & Marmisollé, Waldemar A. Azzaroni, O. (2018). Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochimica Acta, 283, 1178–1187. https://doi.org/10.1016/j.electacta.2018.07.085
  • Firooz, A. A., Mahjoub, A. R., & Khodadadi, A. A. (2011). Hydrothermal synthesis of ZnO/SnO2 nanoparticles with high photocatalytic activity. World Academy of Science, Engineering and Technology, 76(4), 138–140.
  • Guo, Q., & Li, M. (2016). Electrodeposition of poly(sodium 4-styrenesulfonate)-silver nanocomposites for electrochemical detection of H2O2. International Journal of Electrochemical Science, 11(9), 7705–7713. https://doi.org/10.20964/2016.09.14
  • Kondawar, S. B., Agrawal, S. P., Nimkar, S. H., Sharma, H. J., & Patil, P. T. (2012). Conductive polyaniline-tin oxide nanocomposites for ammonia sensor. Advanced Materials Letters, 3(5), 393–398. https://doi.org/10.5185/amlett.2012.6361
  • Li, L., Ferng, L., Wei, Y., Yang, C., & Ji, H. F. (2012). Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. Journal of Colloid and Interface Science, 381(1), 11–16. https://doi.org/10.1016/j.jcis.2012.05.004
  • Lucattini, L., Poma, G., Covaci, A., de Boer, J., Lamoree, M. H., & Leonards, P. E. G. (2018). A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere, 201, 466–482. https://doi.org/10.1016/j.chemosphere.2018.02.161
  • Mirza, A. Z., & Shamshad, H. (2019). Fabrication and characterization of doxorubicin functionalized PSS coated gold nanorod. Arabian Journal of Chemistry, 12(1), 146–150. https://doi.org/10.1016/j.arabjc.2014.08.009
  • Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Preparation and characterization of SnO2 nanoparticles by hydrothermal route. International Nano Letters, 2(1), 2–6. https://doi.org/10.1186/2228-5326-2-17
  • Shi, P. W., Li, Q. Y., Li, Y. C., & Wu, C. F. (2014). Preparation and characterization of poly(sodium 4-styrenesulfonate)-decorated hydrophilic carbon black by one-step in situ ball milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 135–140. https://doi.org/10.1016/j.colsurfa.2013.10.060
  • Tran, M. H., Yang, C. S., & Jeong, H. K. (2016). Fast and economical reduction of poly (sodium 4-styrene sulfonate) graphite oxide film by plasma. Electrochimica Acta, 196, 769–774. https://doi.org/10.1016/j.electacta.2016.03.004
  • Weschler, C. J. (2009). Changes in indoor pollutants since the 1950s. Atmospheric Environment, 43(1), 153–169. https://doi.org/10.1016/j.atmosenv.2008.09.044Yu, H. W., Kim, H. K., Kim, T., Bae, K. M., Seo, S. M., Kim, J. M., … Kim, Y. H. (2014). Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate). ACS Applied Materials and Interfaces, 6(11), 8320–8326. https://doi.org/10.1021/am501151v
  • Zamand, N., Pour, A. N., Housaindokht, M. R., & Izadyar, M. (2014). Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method. Solid State Sciences, 33, 6–11. https://doi.org/10.1016/j.solidstatesciences.2014.04.005
  • Zhang, L., Xu, Z., & Dong, S. (2006). Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+ and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Analytica Chimica Acta, 575(1), 52–56. https://doi.org/10.1016/j.aca.2006.05.069
  • Zhang, Z., & Xu, X. (2014). Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism. Chemical Engineering Journal, 256, 85–92. https://doi.org/10.1016/j.cej.2014.06.020
  • Zhao, B., Zhang, G., Song, J., Jiang, Y., Zhuang, H., Liu, P., & Fang, T. (2011). Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta, 56(21), 7340–7346. https://doi.org/10.1016/j.electacta.2011.06.037
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Filiz Boran 0000-0002-4315-9949

İmren Taşkıran This is me 0000-0002-6031-6328

Sevil Çetinkaya 0000-0001-5421-0474

Project Number M-616
Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Boran, F., Taşkıran, İ., & Çetinkaya, S. (2019). Poli(sodyum 4-stiren sülfonat) Kaplı SnO2 Nanoparçacıklarının Sentezi, Karakterizasyonu ve Gaz Algılama Özelliklerinin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(17), 412-422. https://doi.org/10.31590/ejosat.617383