Günümüzde gelişen teknolojiye
bağlı olarak enerji tüketimi hızla artmakta, buna karşılık enerji kaynakları
hızla tükenmektedir. Elektrik enerjisinin üretiminde kullanılan kömür, doğalgaz
ve uranyum v.b. yenilenemeyen kaynaklarının kurulumu zordur. Aynı zamanda
karbon içeriğine sahip olmaları sebebiyle çevre kirliliğine ve küresel ısınmaya
yol açmaktadır. Böylece, güneş ve rüzgar gibi yenilenebilir enerji
kaynaklarının kullanımına olan ilgi gün geçtikçe artmaktadır. Özellikle, güneş
enerjisinin her daim var olan bir enerji olması sebebiyle daha çok tercih
edilmektedir. Güneşten elde edilen
enerji ışınıma, panel sıcaklığına ve kirliliğine bağlı olarak
değişebilmektedir. Güneş panellerinin çıkışındaki gerilim ve akım arasında
nonlineer bir ilişki bulunmakta ve güneşten elde edilen güç sürekli
değişmektedir. Bu sebeplerden dolayı, bir güneş panelinden maksimum enerji
çekmek üzere Maksimum Güç Noktası Takibi (MGNT) algoritmaları
geliştirilmektedir. Bu algoritmalar arasında en yaygın ve uygulaması en kolay
olan Sars ve Gözlemle (S&G) metodudur. Bu çalışmada, yüksek güç faktörlü
şebeke bağlı bir PV sistemin modellenmesi ve farklı ışınımlar altında kontrolü
ile şebekeye etkileri incelenmiştir. Sunulan PV sistemi, yükseltici tür
dönüştürücü ile tam köprü tür inverterin birleştirilmesi ile oluşturulmuştur.
Sistemin girişinde, istenilen güç ve gerilimi sağlamak üzere PV paneller seri
olarak bağlanmıştır. Yükseltici tür dönüştürücü, S&G algoritması ile
çalıştırılarak MGNT sağlanmaktadır. Aynı zamanda inverter, Ortalama Akım Mod
Kontrol (OAMK) yöntemi ile çalıştırılarak, şebekeye yüksek Güç Faktörü (GF) ile
akım verilmesi sağlanmaktadır. Burada
her iki devre de analog olarak kontrol edilmektedir. Bu amaçla, 1 kW gücü ve
100 kHz anahtarlama frekansına sahip şebeke bağlı bir PV sistem kurularak, PSIM
programı ile simülasyonu gerçekleştirilmiştir. Geliştirilen sistemde 250
W-1000W/m2 ışınım özelliklerine sahip 4 eş panel seri bağlanmıştır.
Farklı ışınım ve güç değerleri altında sistem çalıştırlarak, sistemin kontrolü
ile şebeke etkileri incelenmiştir. Elde edilen sonuçlarda farklı koşullar
altında hedeflenen sistemin, ilgili kontrol algoritmalarına bağlı olarak hızlı
dinamik cevap verme süresine sahip olduğu ve şebeke tarafında her daim yüksek
GF elde edildiği gözlemlenmiştir.
Nowadays, energy consumption is rapidly increasing due to developing
technology, whereas energy resources are rapidly exhausting. The use of
non-renewable resources such as coil, natural gas and uranium e.t.c. is
difficult and cost for the generation of electricity. At the same time, because
of their carbon content, it causes environmental pollution and global warming.
Thus, interest in the use of renewable energy sources for instance solar and
wind is increasing. Solar energy is especially preferred due to endless and
free solar energy. The energy obtained from the sun can vary depending on
irradiation, panel temperature and pollution. There is nonlinear relationship
between the voltage and current at the output of the solar panels and the power
obtained from the sun changes. For these reasons Maximum Power Point Tracking
(MPPT) algorithms are being developed to draw maximum energy from a solar
panel. Among these algorithms, the most common and easiest application is
Perturb and Observe (P&O) method. In this study, modelling and control of a
high power factor grid connected solar system under different irraditions and
their effects on the grid are investigated. The proposed PV system is constructed
by combining a boost converter and a full bridge inverter. At the input of the
system, there are many serial solar panes to provide the petitive power and
voltage. The boost converter is operated with P&O algorithm to provide
MPPT. At the same time, the inverter is operated with Average Current Mode
Control (ACMC) to supply current to the grid with high Power Factor (PF). Here,
both converters are controlled analogously. For this purpose, a grid connected
PV system with 1 kW and 100 kHz switching frequency was established and
simulated with PSIM program. In the developed system, 4 panels with 250W-1000
W/m2 irradition properties are connected in series. By operating the
system under different irradiation and power values, the control of the system
and the effects of the line were examined. In the results obtained, it was
observed that under different conditions, the proposed system has a fast
dynamic response time depending on the relevant control algorithms and always
has high PF on the AC side.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 31, 2019 |
Published in Issue | Year 2019 Issue: 17 |