Research Article
BibTex RIS Cite

Insight into Effects of Ipolamiide isolated from Plantago euphratica on Probiotic Properties of Lactobacillus acidophilus and Lactobacillus rhamnosus

Year 2019, Issue: 17, 995 - 1000, 31.12.2019
https://doi.org/10.31590/ejosat.650013

Abstract

Iridoid glycosides are 2-cyclopentanoid derivatives of terpene origin naturally occuring in the leaves, fruits, seeds, bark, roots of various plants. They are medically important because used in the treatment of many diseases while normally protect plants from biotic and abiotic attacks. They have anti-microbial, anti-tumor, anti-cardiac and anti-inflammatory effects. Ipolamiide is one of the iridoid glycosides and naturally present in many plants. Ipolamiide is very little known compound in terms of the biological activities.
The beneficial microorganisms in the body and the plant secondary metabolites can interact in the human gastrointestinal tract. Probiotics are live microorganisms that have many health benefits by improving microbial balance of the intestines. Among the most known and most studied probiotics are Lactobacillus acidophilus and Lactobacillus rhamnosus.
The aim of the present study is to investigate the effects of ipolamiide on probiotic bacteria Lactobacillus rhamnosus GG (GG) and Lactobacillus acidophilus LA-5 (LA-5). For this purpose, ipolamiide was added to the growth of probiotics in different concentrations and its effects on bacterial growth kinetics, bacterial surface hydrophobicity (Microbial Adhesion to Solvents - MATS Test) and bacterial aggregation (Auto-Aggregation Test) were investigated.
The results showed that ipolamiide did not show any important change in surface hydrophobicity of probiotic bacteria. Dose-dependent increases in auto-aggregation properties of the LA-5 and GG were observed. However, further detailed studies are required to give insight into other possible biological activities of ipolamiide.

References

  • Alp, D., & Ertürkmen, P. (2017). Probiyotik Olarak Kullanılan Lactobacillus spp. Suşlarının Kolesterol Düşürücü Etkileri ve Olası Mekanizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 108–113.
  • Barua, C. C., S. K. Pal, J. D. Roy, B. Buragohain, A. Talukdar, A. G. Barua, P. Borah, 2011. Studies on the anti-inflammatory properties of Plantago erosa leaf extract in rodents. Journal of ethnopharmacology, 134(1), 62-66.
  • Celebioglu, H. U., Delsoglio, M., Brix, S., Pessione, E., & Svensson, B. (2018). Plant Polyphenols Stimulate Adhesion to Intestinal Mucosa and Induce Proteome Changes in the Probiotic Lactobacillus acidophilus NCFM. Molecular Nutrition and Food Research, 62(4), 1–11. https://doi.org/10.1002/mnfr.201700638
  • Chiang, L., W. Chiang, M. Chang, L. Ng, C. Lin, 2002. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral research, 55(1), 53-62.
  • Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition, 69(5), 1052S-1057S.
  • Darrow, K., M. D. Bowers, 1997. Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochemical Systematics and Ecology, 25(1), 1-11.
  • Das, S., R. N. Barua, R. P. Sharma, J. N. Baruah, P. Kulanthaivel, W. Herz, 1984. Secoiridoids from Exacum tetragonum. Phytochemistry, 23(4), 908-909.
  • Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., … Collins, J. K. (2001). In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. In American Journal of Clinical Nutrition. https://doi.org/10.1093/ajcn/73.2.386s
  • Erem, F., Küçükçetin, A., & Certel, M. (2013). Bacillus Türlerinin Probiyotik Olarak Değerlendirilmesi. Gıda, 38(4), 247–254.
  • Etzold, S., Kober, O. I., Mackenzie, D. a, Tailford, L. E., Gunning, a P., Walshaw, J., … Juge, N. (2014). Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environmental Microbiology, 16(3), 888–903. https://doi.org/10.1111/1462-2920.12377
  • Fuchs, A., M. D. Bowers, 2004. Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. Journal of Chemical Ecology, 30(9), 1723-1741.
  • Gálvez, M., C. Martín-Cordero, P. J. Houghton, M. J. Ayuso, 2005. Antioxidant activity of methanol extracts obtained from Plantago species. Journal of Agricultural and Food Chemistry, 53(6), 1927-1933.
  • Gálvez, M., C. Martín‐Cordero, P. J. Houghton, M. J. Ayuso, 2005. Antioxidant activity of Plantago bellardii All. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(12), 1074-1076.
  • Handjieva, N., S. Spassov, G. Bodurova, H. Saadi, S. Popov, O. Pureb, J. Zamjansan, 1991. Majoroside, an iridoid glucoside from Plantago major. Phytochemistry, 30(4), 1317-1318.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., … Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(August 2014), 9. https://doi.org/10.1038/nrgastro.2014.66
  • Jensen, S. R., C. E. Olsen, K. Rahn, J. H. Rasmussen, 1996. Iridoid glucosides in Plantago alpina and P. altissima. Phytochemistry, 42(6), 1633-1636.
  • Jurišić Grubešić, R., G. Srečnik, D. Kremer, J. Vuković Rodríguez, T. Nikolić, S. Vladimir‐Knežević, 2013. Simultaneous RP‐HPLC‐DAD Separation, and Determination of Flavonoids and Phenolic Acids in Plantago L. Species. Chemistry & biodiversity, 10(7), 1305-1316.
  • Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1–7. https://doi.org/10.5402/2013/481651
  • Kleerebezem, M., & Vaughan, E. E. (2009). Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annual Review of Microbiology, 63, 269–290. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19575569
  • Kos, B., Susković, J., Vuković, S., Simpraga, M., Frece, J., & Matosić, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94(6), 981–987. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12752805
  • Liu, Y., Yang, S. F., Li, Y., Xu, H., Qin, L., & Tay, J. H. (2004). The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology, 110(3), 251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  • Moon, H.-I., O.-P. Zee, 1999. Anticancer Compounds of Plantago asiatica L. Korean Journal of Medicinal Crop Science, 7(2), 143-146.
  • Najib, A., G. Alam, M. Halidin, 2012. Isolation and identification of antibacterial compound from diethyl ether extract of Plantago major L. Pharmacognosy Journal, 4(31), 59-62.
  • Nishibe, S., M. Sasahara, Y. Jiao, C. L. Yuan, T. Tanaka, 1993. Phenylethanoid glycosides from Plantago depressa. Phytochemistry, 32(4), 975-977.
  • Uymaz, B. (2010). Probiyotikler ve Kullanım Alanları. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi,.
  • Venditti, A., M. Serafini, M. Nicoletti, A. Bianco, 2015. Terpenoids of Linaria alpina (L.) Mill. from Dolomites, Italy. Natural product research, 29(21), 2041-2044.
  • Zacchigna, M., F. Cateni, M. Faudale, S. Sosa, R. Della Loggia, 2009. Rapid HPLC analysis for quantitative determination of the two isomeric triterpenic acids, oleanolic acid and ursolic acid, in plantago major. Scientia Pharmaceutica, 77(1), 79-86.

Plantago Euphratica Bitkisinden İzole Edilen İpolamiidin Lactobacillus acidophilus ve Lactobacillus rhamnosus Bakterilerinin Probiyotik Özellikleri Üzerine Etkileri

Year 2019, Issue: 17, 995 - 1000, 31.12.2019
https://doi.org/10.31590/ejosat.650013

Abstract

İridoid glikozitler, doğal olarak yapraklarda, meyvelerde, tohumlarda, ağaç kabuğunda, bitki köklerinde bulunan terpenin 2-siklopentanoid türevleridir. Tıbbi olarak önemlidir, çünkü normalde bitkileri biyotik ve abiyotik ataklardan korurken birçok hastalığın tedavisinde kullanılır. Anti-mikrobiyal, anti-tümör, anti-kardiyak ve anti-enflamatuar etkilere sahiptirler. Ipolamiid, iridoid glikozitlerden biridir ve birçok bitkide doğal olarak bulunur. Ipolamiid biyolojik aktiviteleri açısından çok az bilinen bir bileşiktir.
Vücuttaki faydalı mikroorganizmalar ve bitki kökenli bileşikler, insan gastrointestinal kanalında etkileşime girebilir. Probiyotikler, bağırsakların mikrobiyal dengesini geliştirerek birçok sağlık yararına sahip olan canlı mikroorganizmalardır. En bilinen ve en çok çalışılan probiyotikler arasında Lactobacillus acidophilus ve Lactobacillus rhamnosus bulunur.
Bu çalışmanın amacı, ipolamiidin probiyotik bakteriler Lactobacillus rhamnosus GG (GG) ve Lactobacillus acidophilus LA-5 (LA-5) üzerindeki etkilerini araştırmaktır. Bu amaçla probiyotiklerin büyümesine farklı konsantrasyonlarda ipolamiid eklenmiş ve bakteriyel büyüme kinetiği, bakteriyel yüzey hidrofobisitesi (Solventlere Mikrobiyel Yapışma - MATS Testi) ve bakteriyel agregasyona (Oto-Agregasyon Testi) etkileri incelenmiştir.
Sonuçlar, ipolamidin probiyotik bakterilerin yüzey hidrofobisitesinde önemli bir değişikliğe sebep olmadığını göstermiştir. LA-5 ve GG'nin oto-agregasyon özelliklerinde doza bağlı artışlar gözlenmiştir. Bununla birlikte, ipolamiidin diğer olası biyolojik aktiviteleri hakkında bilgi edinmek için daha ayrıntılı çalışmalara ihtiyaç vardır.

References

  • Alp, D., & Ertürkmen, P. (2017). Probiyotik Olarak Kullanılan Lactobacillus spp. Suşlarının Kolesterol Düşürücü Etkileri ve Olası Mekanizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 108–113.
  • Barua, C. C., S. K. Pal, J. D. Roy, B. Buragohain, A. Talukdar, A. G. Barua, P. Borah, 2011. Studies on the anti-inflammatory properties of Plantago erosa leaf extract in rodents. Journal of ethnopharmacology, 134(1), 62-66.
  • Celebioglu, H. U., Delsoglio, M., Brix, S., Pessione, E., & Svensson, B. (2018). Plant Polyphenols Stimulate Adhesion to Intestinal Mucosa and Induce Proteome Changes in the Probiotic Lactobacillus acidophilus NCFM. Molecular Nutrition and Food Research, 62(4), 1–11. https://doi.org/10.1002/mnfr.201700638
  • Chiang, L., W. Chiang, M. Chang, L. Ng, C. Lin, 2002. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral research, 55(1), 53-62.
  • Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition, 69(5), 1052S-1057S.
  • Darrow, K., M. D. Bowers, 1997. Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochemical Systematics and Ecology, 25(1), 1-11.
  • Das, S., R. N. Barua, R. P. Sharma, J. N. Baruah, P. Kulanthaivel, W. Herz, 1984. Secoiridoids from Exacum tetragonum. Phytochemistry, 23(4), 908-909.
  • Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., … Collins, J. K. (2001). In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. In American Journal of Clinical Nutrition. https://doi.org/10.1093/ajcn/73.2.386s
  • Erem, F., Küçükçetin, A., & Certel, M. (2013). Bacillus Türlerinin Probiyotik Olarak Değerlendirilmesi. Gıda, 38(4), 247–254.
  • Etzold, S., Kober, O. I., Mackenzie, D. a, Tailford, L. E., Gunning, a P., Walshaw, J., … Juge, N. (2014). Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environmental Microbiology, 16(3), 888–903. https://doi.org/10.1111/1462-2920.12377
  • Fuchs, A., M. D. Bowers, 2004. Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. Journal of Chemical Ecology, 30(9), 1723-1741.
  • Gálvez, M., C. Martín-Cordero, P. J. Houghton, M. J. Ayuso, 2005. Antioxidant activity of methanol extracts obtained from Plantago species. Journal of Agricultural and Food Chemistry, 53(6), 1927-1933.
  • Gálvez, M., C. Martín‐Cordero, P. J. Houghton, M. J. Ayuso, 2005. Antioxidant activity of Plantago bellardii All. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(12), 1074-1076.
  • Handjieva, N., S. Spassov, G. Bodurova, H. Saadi, S. Popov, O. Pureb, J. Zamjansan, 1991. Majoroside, an iridoid glucoside from Plantago major. Phytochemistry, 30(4), 1317-1318.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., … Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(August 2014), 9. https://doi.org/10.1038/nrgastro.2014.66
  • Jensen, S. R., C. E. Olsen, K. Rahn, J. H. Rasmussen, 1996. Iridoid glucosides in Plantago alpina and P. altissima. Phytochemistry, 42(6), 1633-1636.
  • Jurišić Grubešić, R., G. Srečnik, D. Kremer, J. Vuković Rodríguez, T. Nikolić, S. Vladimir‐Knežević, 2013. Simultaneous RP‐HPLC‐DAD Separation, and Determination of Flavonoids and Phenolic Acids in Plantago L. Species. Chemistry & biodiversity, 10(7), 1305-1316.
  • Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1–7. https://doi.org/10.5402/2013/481651
  • Kleerebezem, M., & Vaughan, E. E. (2009). Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annual Review of Microbiology, 63, 269–290. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19575569
  • Kos, B., Susković, J., Vuković, S., Simpraga, M., Frece, J., & Matosić, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94(6), 981–987. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12752805
  • Liu, Y., Yang, S. F., Li, Y., Xu, H., Qin, L., & Tay, J. H. (2004). The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology, 110(3), 251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  • Moon, H.-I., O.-P. Zee, 1999. Anticancer Compounds of Plantago asiatica L. Korean Journal of Medicinal Crop Science, 7(2), 143-146.
  • Najib, A., G. Alam, M. Halidin, 2012. Isolation and identification of antibacterial compound from diethyl ether extract of Plantago major L. Pharmacognosy Journal, 4(31), 59-62.
  • Nishibe, S., M. Sasahara, Y. Jiao, C. L. Yuan, T. Tanaka, 1993. Phenylethanoid glycosides from Plantago depressa. Phytochemistry, 32(4), 975-977.
  • Uymaz, B. (2010). Probiyotikler ve Kullanım Alanları. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi,.
  • Venditti, A., M. Serafini, M. Nicoletti, A. Bianco, 2015. Terpenoids of Linaria alpina (L.) Mill. from Dolomites, Italy. Natural product research, 29(21), 2041-2044.
  • Zacchigna, M., F. Cateni, M. Faudale, S. Sosa, R. Della Loggia, 2009. Rapid HPLC analysis for quantitative determination of the two isomeric triterpenic acids, oleanolic acid and ursolic acid, in plantago major. Scientia Pharmaceutica, 77(1), 79-86.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ebru Köroğlu This is me 0000-0001-9357-4668

Hasan Ufuk Çelebioğlu 0000-0001-7207-2730

Hüseyin Akşit 0000-0002-1509-851X

Recep Taş 0000-0002-3743-7770

Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Köroğlu, E., Çelebioğlu, H. U., Akşit, H., Taş, R. (2019). Insight into Effects of Ipolamiide isolated from Plantago euphratica on Probiotic Properties of Lactobacillus acidophilus and Lactobacillus rhamnosus. Avrupa Bilim Ve Teknoloji Dergisi(17), 995-1000. https://doi.org/10.31590/ejosat.650013