Research Article
BibTex RIS Cite

A Solar Panel Cleaning Robot Design and Application

Year 2019, Special Issue 2019, 343 - 348, 31.10.2019
https://doi.org/10.31590/ejosat.638291

Abstract

Solar energy, which is one of the renewable energy sources, has an important role in meeting the increasing electrical energy demand of our globe. In recent years, many countries have established their energy policies based on solar energy, and researchers have been working on solar panel efficiency, maximum energy extraction from the sun, control and power electronics. The energy extracting from the sun is converted into electrical energy via solar panels. To extract continuously maximum energy level from the sun reduces installation costs and makes it easier to meet the demanded peak electrical power. Physical conditions such as muddy rain, snow and dusting place between the solar panel and the sun. This situation results the reduced electrical power extraction level which can be technically produced with clean solar panel surface. Therefore, it is also very important to keep the solar panels clean as well as the maximum power point tracking devices. In this study, a solar panel cleaning robot (SPCR) has been designed and tested in real time. The designed dual-motor and crawler robot moves horizontally and the cleaning brush runs on the vertical axis. In addition, the length of the solar panel array can be detected by position switches to keep the SPCR in desired working area. 

References

  • Available from: https://www.enerji.gov.tr/en-US/Pages/Solar
  • Available from: https://www.teias.gov.tr/sites/default/files/2018-03/kurulu_guc.pdf
  • Mondal, A. K., & Bansal, K. (2015). Structural analysis of solar panel cleaning robotic arm. Current Science, 108(6), 1047-1052.
  • Faranda, R., & Leva, S. (2008). Energy comparison of MPPT techniques for PV Systems. WSEAS transactions on power systems, 3(6), 446-455.
  • Elgendy, M. A., Zahawi, B., & Atkinson, D. J. (2011). Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE transactions on sustainable energy, 3(1), 21-33.
  • Safari, A., & Mekhilef, S. (2010). Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE transactions on industrial electronics, 58(4), 1154-1161.
  • Patel, H., & Agarwal, V. (2008). MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, 23(1), 302-310.
  • Ramabadran, R., & Mathur, B. (2009). Effect of shading on series and parallel connected solar PV modules. Modern Applied Science, 3(10), 32-41.
  • Rani, B. I., Ilango, G. S., & Nagamani, C. (2013). Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Transactions on sustainable energy, 4(3), 594-601.
  • Sulaiman, S. A., Singh, A. K., Mokhtar, M. M. M., & Bou-Rabee, M. A. (2014). Influence of dirt accumulation on performance of PV panels. Energy Procedia, 50, 50-56.
  • Adinoyi, M. J., & Said, S. A. (2013). Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable energy, 60, 633-636.
  • Mani, M., & Pillai, R. (2010). Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and sustainable energy reviews, 14(9), 3124-3131.
  • Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric environment, 45(25), 4299-4304.
  • Avaiable from: https://www.serbot.ch/en/solar-panels-cleaning/gekko-solar-robot
  • Available from: https://www.serbot.ch/en/solar-panels-cleaning/gekko-solar-farm-robot
  • Available from: https://www.aerialpower.com/solarbrush/
  • Hardt, M., Martınez, D., González, A., Garrido, C., Aladren, S., Villa, J. R., & Saenz, J. (2011, September). HECTOR—Heliostat Cleaning Team-Oriented Robot. In Solar-PACES 2011 Conference, Granada, Spain, September (pp. 20-23).
  • Available from: https://www.greentechmedia.com/articles/read/sunpower-cleans-up-solar-with-acquisiton-of-greenbotics#gs.o6xruc
  • Available from: https://www.solarpanelcleaningsystems.com/solar-panel-cleaning-services.html
  • Al-Dhaheri, S., Lamont, L., El Chaar, L., & Al-Ameri, O. (2010, April). Automated design for boosting photovoltaic (PV) performance offshore. In Proceedings of 2010 transmission and distribution conference and exposition; 2010; Abu Dhabi.
  • Al-Qubaisi, E. M., Al-Ameri, M. A., Al-Obaidi, A. A., Rabia, M. F., El-Chaar, L., & Lamont, L. A. (2009, November). Microcontroller based dust cleaning system for a standalone photovoltaic system. In 2009 International Conference on Electric Power and Energy Conversion Systems (EPECS) (pp. 1-6). IEEE.
  • Jaradat, M. A., Tauseef, M., Altaf, Y., Saab, R., Adel, H., Yousuf, N., & Zurigat, Y. H. (2015, December). A fully portable robot system for cleaning solar panels. In 2015 10th International Symposium on Mechatronics and its Applications (ISMA) (pp. 1-6). IEEE.
  • Anderson, M., Grandy, A., Hastie, J., SWEEZEY, A., RANKY, R., MAVROIDIS, C., & MARKOPOULOS, Y. P. (2010). Robotic device for cleaning photovoltaic panel arrays. In Mobile Robotics: Solutions and Challenges (pp. 367-377).
  • Lamont, L. A., & El Chaar, L. (2011). Enhancement of a stand-alone photovoltaic system’s performance: Reduction of soft and hard shading. Renewable Energy, 36(4), 1306-1310.
  • Mondal, A. K., & Bansal, K. (2015). A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Advanced Robotics, 29(8), 515-524.
  • Mondal, A. K., & Bansal, K. (2015). Structural analysis of solar panel cleaning robotic arm. Current Science, 108(6), 1047-1052.
  • Patil, P. A., Bagi, J. S., & Wagh, M. M. (2017, August). A review on cleaning mechanism of solar photovoltaic panel. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 250-256). IEEE.
  • Available from: https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf
  • Available from: https://www.arduino.cc/en/main/software

Güneş Paneli Temizleme Robotu Tasarımı ve Uygulaması

Year 2019, Special Issue 2019, 343 - 348, 31.10.2019
https://doi.org/10.31590/ejosat.638291

Abstract

Yenilenebilir enerji kaynaklarından olan güneş enerji, yer küremizin artan elektrik enerji talebinin karşılanmasında önemli bir konuma gelmiştir. Son yıllarda ülkelerin çoğu enerji politikalarını güneş enerjisi tabanlı kurmakta ve araştırmacılar da güneş paneli verimi, güneşten maksimum enerji çıkarımı, denetimi ve güç elektroniği üzerine çalışmalarını sürdürmektedir. Güneşten gelen gelen enerji güneş panelleri yardımıyla elektirik enerjine çevrilmektedir. Panellerden alınan enerjinin sürekli maksimumda tutulması kurulum maliyetini düşürerek talep edilebilecek tepe elektrik gücünün karşılanmasını da daha kolay duruma gelmektedir. Çamur halinde yağan yağmur, kar ve tozlanma gibi fiziksel durumlar panel ile güneş arasına girerek üertilebilecek güç seviyesini azaltmaktadır. Bu nedenle maksimum güç noktası izleyici cihazların yanında güneş panellerinin temiz tutulması da hayli önem arz etmektedir. Bu çalışmada bir güneş paneli temzileme robotu (GPTR) tasarlanmış olup sistemin gerçek zamanlı testleri de yapılmıştır. Tasarlanan çift motorlu ve paletli robot yatay düzlemde hareket ederken temizleme fırçası ise dikey eksende çalışmaktadır. Ayrıca konum anahtarları ile güneş paneli dizisinin boyutları algılanarak GPTR istenilen çalışma alanı içinde tutulabilmektedir. 

References

  • Available from: https://www.enerji.gov.tr/en-US/Pages/Solar
  • Available from: https://www.teias.gov.tr/sites/default/files/2018-03/kurulu_guc.pdf
  • Mondal, A. K., & Bansal, K. (2015). Structural analysis of solar panel cleaning robotic arm. Current Science, 108(6), 1047-1052.
  • Faranda, R., & Leva, S. (2008). Energy comparison of MPPT techniques for PV Systems. WSEAS transactions on power systems, 3(6), 446-455.
  • Elgendy, M. A., Zahawi, B., & Atkinson, D. J. (2011). Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE transactions on sustainable energy, 3(1), 21-33.
  • Safari, A., & Mekhilef, S. (2010). Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE transactions on industrial electronics, 58(4), 1154-1161.
  • Patel, H., & Agarwal, V. (2008). MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, 23(1), 302-310.
  • Ramabadran, R., & Mathur, B. (2009). Effect of shading on series and parallel connected solar PV modules. Modern Applied Science, 3(10), 32-41.
  • Rani, B. I., Ilango, G. S., & Nagamani, C. (2013). Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Transactions on sustainable energy, 4(3), 594-601.
  • Sulaiman, S. A., Singh, A. K., Mokhtar, M. M. M., & Bou-Rabee, M. A. (2014). Influence of dirt accumulation on performance of PV panels. Energy Procedia, 50, 50-56.
  • Adinoyi, M. J., & Said, S. A. (2013). Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable energy, 60, 633-636.
  • Mani, M., & Pillai, R. (2010). Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and sustainable energy reviews, 14(9), 3124-3131.
  • Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric environment, 45(25), 4299-4304.
  • Avaiable from: https://www.serbot.ch/en/solar-panels-cleaning/gekko-solar-robot
  • Available from: https://www.serbot.ch/en/solar-panels-cleaning/gekko-solar-farm-robot
  • Available from: https://www.aerialpower.com/solarbrush/
  • Hardt, M., Martınez, D., González, A., Garrido, C., Aladren, S., Villa, J. R., & Saenz, J. (2011, September). HECTOR—Heliostat Cleaning Team-Oriented Robot. In Solar-PACES 2011 Conference, Granada, Spain, September (pp. 20-23).
  • Available from: https://www.greentechmedia.com/articles/read/sunpower-cleans-up-solar-with-acquisiton-of-greenbotics#gs.o6xruc
  • Available from: https://www.solarpanelcleaningsystems.com/solar-panel-cleaning-services.html
  • Al-Dhaheri, S., Lamont, L., El Chaar, L., & Al-Ameri, O. (2010, April). Automated design for boosting photovoltaic (PV) performance offshore. In Proceedings of 2010 transmission and distribution conference and exposition; 2010; Abu Dhabi.
  • Al-Qubaisi, E. M., Al-Ameri, M. A., Al-Obaidi, A. A., Rabia, M. F., El-Chaar, L., & Lamont, L. A. (2009, November). Microcontroller based dust cleaning system for a standalone photovoltaic system. In 2009 International Conference on Electric Power and Energy Conversion Systems (EPECS) (pp. 1-6). IEEE.
  • Jaradat, M. A., Tauseef, M., Altaf, Y., Saab, R., Adel, H., Yousuf, N., & Zurigat, Y. H. (2015, December). A fully portable robot system for cleaning solar panels. In 2015 10th International Symposium on Mechatronics and its Applications (ISMA) (pp. 1-6). IEEE.
  • Anderson, M., Grandy, A., Hastie, J., SWEEZEY, A., RANKY, R., MAVROIDIS, C., & MARKOPOULOS, Y. P. (2010). Robotic device for cleaning photovoltaic panel arrays. In Mobile Robotics: Solutions and Challenges (pp. 367-377).
  • Lamont, L. A., & El Chaar, L. (2011). Enhancement of a stand-alone photovoltaic system’s performance: Reduction of soft and hard shading. Renewable Energy, 36(4), 1306-1310.
  • Mondal, A. K., & Bansal, K. (2015). A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Advanced Robotics, 29(8), 515-524.
  • Mondal, A. K., & Bansal, K. (2015). Structural analysis of solar panel cleaning robotic arm. Current Science, 108(6), 1047-1052.
  • Patil, P. A., Bagi, J. S., & Wagh, M. M. (2017, August). A review on cleaning mechanism of solar photovoltaic panel. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 250-256). IEEE.
  • Available from: https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf
  • Available from: https://www.arduino.cc/en/main/software
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ömür Akyazı 0000-0001-6266-2323

Erdinç Şahin This is me 0000-0002-9740-599X

Timur Özsoy This is me

Mehmet Algül This is me

Publication Date October 31, 2019
Published in Issue Year 2019 Special Issue 2019

Cite

APA Akyazı, Ö., Şahin, E., Özsoy, T., Algül, M. (2019). A Solar Panel Cleaning Robot Design and Application. Avrupa Bilim Ve Teknoloji Dergisi343-348. https://doi.org/10.31590/ejosat.638291

Cited By