Research Article
BibTex RIS Cite

Rekombinant ve Yabanıl Bakteriler ile Kromun Biyoremediasyonu

Year 2020, Ejosat Special Issue 2020 (ARACONF), 604 - 609, 01.04.2020
https://doi.org/10.31590/ejosat.araconf73

Abstract

Günümüzde ağır metal kirliliği önemli çevre sorunlarından biri haline gelmiştir. Kadmiyum, kurşun ve krom gibi ağır metallerin düşük konsantrasyonları canlılar için toksiktir. Krom (Cr), dünyadaki en toksik ağır metallerden biridir ve endüstriyel olarak salınan yaygın bir çevresel kirleticilerdendir. Cr metal iyonu; biyolojik olarak parçalanmayan ve doğada biriken bir ağır metaldir. Krom, biyolojik olarak gerekli değildir ve alıcı ortamlara (su ve toprak gibi) yapılan deşarjlar sonucunda besin zinciri boyunca birikerek insanlara kadar aktarılır. Kromun ana kaynakları; tabakhaneler, elektrokaplama, madencilik, tekstil, metal işleme, gübre, boyalar ve pigment imalat sanayi gibi çeşitli endüstrilerdir. İnsan sağlığı ve su ekosistemleri üzerinde olumsuz etkileri olan krom metal iyonları, farklı arıtma teknolojileri ile su ve atık sudan uzaklaştırılmalıdır.
Krom giderimin de yaygın kullanılan metotlar; ters osmoz, elektrokimyasal prosesler, iyon değişimi, aktif karbona adsorpsiyon ve katılaştırma/stabilizasyondur. Bu yöntemlerin pahalı olmaları, yan ürün oluşumu ve çevre dostu olmamaları gibi bazı dezavantajları vardır. Biyoremediasyon prosesleri ise tüm bu sorunlara bir çözüm getirmiş ve çevre, ekonomi ve enerji açısından fayda sağlamıştır.
Bakterilerin ağır metallere karşı geliştirdikleri direnç mekanizmaları sayesinde, ağır metallerin yüksek derişimlerinin olduğu ortamlarda hayatta kalırlar. Bakterilerin krom metal iyonunu bağlama kapasitelerini artırmak için biyoremediasyon umut verici bir prosestir. Yabanıl bakterilere, metalotiyonein, poli-histidinler veya poli-sisteinler gibi peptidler eksprese edilerek metal bağlama kapasitesini artırılabilmektedir. Bu derlemede; hücre içine metal girişinin engellenmesi, metalin proteinlere bağlanarak hücre içinde tutulması, metallerin hücrenin dışında tutulması, enzimlerle metalin daha az toksik forma dönüştürülmesi gibi direnç mekanizmalarına yer verilmiştir.
Bu çalışmada, bazı yabanıl ve rekombinant bakteri türlerinin krom metal iyonunu giderimleri araştırılmıştır. Bu derlemenin amacı kromu etkili bir şekilde bağlayan bakterileri ve proteinleri özetlemektir.

References

  • Fernandez, P.M., Vinarta, S.C., Bernal, A.R., Cruz, E. L., Figueroa. L.I.C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere, Vol. 208, 139-148.
  • Tekerlekopoulou, A.G., Tsiflikiotou, M., Akritidou, L. Viennas, A., Tsiamis, G., Pavlou, S., Bourtzis, K., Vayenas. D.V. (2013). Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Research, vol. 47, 623-636.
  • Parker, D.L., Borer, P., Bernier-Latmani., R. (2011). The response of Shewanella oneidensis MR-1 to Cr(III) toxicity differs from that to Cr(VI). Frontiers in Microbiology, vol. 2, 1-14.
  • Baral, A., Engelken, R.D. (2002). Chromium-based regulations and greening in metal finishing industries in the USA. Environmental Science & Policy, vol. 5, 121-133.
  • Kumar, V., Dwivedi, S.K. (2019). Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere, vol. 237, 1-11.
  • Witek-Krowiak, A. (2013). Kinetics and equilibrium of copper and chromium ions removal from aqueous solutions using sawdust. Environmental Engineering and Management Journal, vol. 12, 2125-2135.
  • Wong, P.K., S.c. Kwok. (1992). Accumulation of nickel ion (Ni+2) by imıııobilized ceIls of Enterobacter species. Biotechnol Letters, 14:7,629-634 p.
  • Çınar Acar, B. (2018). Doktora Tezi. Endüstriyel Atıksulardan Biyoremediasyon İle Kromun Detoksifikasyonu, Doğal ve Kimyasa/Biyolojik Yöntemlerle Modifiye Edimiş Kil Üzerine Krom Adsorpsiyonunun Merkezi Kompozit Tasarım Yöntemi Kullanılarak İncelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Taran, M., Sisakhtnezhad, S., Azin, T. (2015). Biological removal of nickel (II) by Bacillus sp. KL1 in different conditions: optimization by Taguchi statistical approach. Polish Journal of Chemical Technology, vol.17(3), 29-32.
  • Evgen, E. (2012). Yüksek Lisans Tezi. Pseudomonas Cinsi Bakterilerde Hekzavalent Krom İndirgeme Üzerine Ağır Metallerin Etkisi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • Su, Y. Q., Zhao, Y. J., Wu, N., Chen, Y. E., Zhang, W. J., Cao, D. R. Q, Y. (2018). Chromium removal from solution by five photosynthetic bacteria isolates. Applied Microbiology and Biotechnology, vol. 102, 1983–1995.
  • Kahvecioglu, Ö., Kartal, G., Güven, A., Timur, S. (2003). Metallerin Çevresel Etkileri. İTÜ Metalurji ve Malzeme Mühendisligi Bölümü. İstanbul.
  • Ting, Y. P., Lawson, F. Prince, L. G. (1991). Uptake of cadmium and zinc by the alga Chlorella vulgaris: II Multi-ion stiation. Biotechnology Bioengineering, vol.37, 445-455.
  • HoIan, Z. R., Volesky, B., Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, vol. 41, 819-825.
  • Shumate, S. E., Strandberg, G.W. (1985). Accumulation of Metals By Microbial Cell. In Compherensive Biotechnology, 4, 235-240.
  • Şencan, A. (2006). Yüksek Lisans Tezi. Sulu Çözelti ve Deri Endüstrisi Atıksuyundan Cr(VI) İyonunun Aktif Çamur Biyokütlesi ile Biyosorpsiyonu. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü, Isparta.
  • Volesky, B., May, R., Holan, Z. R. (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology Bioengineering, vol. 41, 826-289.
  • Ergül Ülger, Z. (2016). Ağır Metal İçeren Atıksulardan İzole Edilecek Bakteriler İle Cr(VI) Biyoremediasyonu,” Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara,
  • Koçberber Kılıç, N. (2008). Doktora Tezi. Proteomik Yaklaşımla Atıksu Kaynaklı Mikroorganizmalarda Cr(VI) Direnç Yollarının Araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Bruins, M. R., Kapil, S., Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Enviromental Safety, vol. 45, 198-207.
  • Silver, S. (1996). Bacterial resistance to toxic metal-ions-a review. Gene, vol. 179, 9-19.
  • Rosen, B. P. (2002). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology, Part A vol. 133, 689-693.
  • Gadd, G. M. (1990). Biosorption,” Journal Of Chemistry And Industry. 421-426.
  • Han, N. S., Seo, J. R., Chung, Y.C. (1992). Growth and copper resistance of recombinant Saccharomyces cerevisiae containing a metallothionein gene. Biotechnology Letters, vol. 14, no:1, 7-11.
  • Francisco, R,. Alpoim, M. C., Morais, P. V., (2002). Diversity of chromium-resistant and reducing bacteria in a chromium contaminated activated sludge. Journal of Applied Microbiology, 92: 837–843.
  • Megharaj, M., Avudainayagam, S., Naidu, R., (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47: 51–54.
  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H. (2005). Characterization of a novel Cr(VI) reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology, 50: 266–271. Campos, V. L., Moraga, R., Yanez, J., Zaror, C. A., Mondaca, M. A., (2005). Chromate reduction by Serratia marcescens isolated from tannery effluent. Bulletin of Environmental Contamination and Toxicology, 75: 400–406. Thacker, U., Madamwar, D. (2005). Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World Journal of Microbiology and Biotechnology, 21: 891–899. Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., Chandraraj, K., (2006). Reduction of Cr(VI) by a Bacillus sp. Biotechnology Letter, 28: 247–252. Goulhen, F., Gloter, A., Guyot, F., Bruschi, A., (2006). Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Applied Microbiology and Biotechnology, 71: 892–897. Viamajala, S., Smith, W. A., Sani, R. K., Apel, W. A., Petersen, J. N., Neal, A. L. (2007). Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresource Technology, 98: 612–622.
  • Velásquez, L., Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, vol. 167, 713-716.
  • Srinath, T., Verma, T., Ramteke, P.W., Garg, S.K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, vol. 48, 427-435.
  • Singh, A., Malaviya, P. (2015). Optimization of culture parameters for tannery effluent bioremediation by Bacillus galactosidilyticus APBS5-3,” Journal of Environmental Biology, Vol. 36, no: 5, 1149-1152.
  • Sathishkumar, K., Murugan, K., Benelli, G., Higuchi, A., Rajasekar, A.(2017). Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Annals of Microbiology, vol. 67, 91–98.
  • Robins, K.J., Hooks, D.O., Rehm, B. H. A., Ackerley, D. F. (2013). Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One, vol. 8, 1-8.
  • Özbey, E., Asma, D. (2019). Krom’un Deinococcus radiodurans ve Rekombinantlarına Etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no: 3, 1305-1315.
  • Kiliç, N.K. and Dönmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. . Journal of Hazardous Materials,154, 1019-1024.
  • Zahoor, A., Rehman, A. (2009). Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal Environmental Science (China), 21, 814-820.
  • Polti, M.A., Amoroso, M.J. and Abate, C.M. (2010). Chromate reductase activity in Streptomyces sp. MC1. Journal Genetic Applied Microbiology, 56, 11-18.
  • Caravelli, A.H., Giannuzzi, L. and Zaritzky, N.E. (2008). Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. Journal of Hazardous Materials, 156, 214-222.

Bioremediation of Chromium with Recombinant and Wild Bacteria

Year 2020, Ejosat Special Issue 2020 (ARACONF), 604 - 609, 01.04.2020
https://doi.org/10.31590/ejosat.araconf73

Abstract

Today, heavy metal pollution has become one of the most important environmental problems. Low concentrations of heavy metals such as cadmium, lead and chromium are toxic to living things. Chromium (Cr) is one of the most toxic heavy metals in the world and is a common industrially released environmental pollutant. Chromium is a heavy metal that is non-biodegradable and accumulated in nature. For this reason, it is very important to treat chromium metal ion by making it suitable for discharge limits. Chromium is not biologically necessary and accumulates along the food chain as a result of discharges to receiving environments (such as water and soil) and transferred to humans. The main sources of chromium are various industries such as tanneries, electroplating, mining, textile, metal processing, fertilizer, dyes and pigment manufacturing industry. Chromium metal ions, which has negative effects on human health and water ecosystems, should be removed from water and wastewater with different treatment technologies.
The most widely used methods are for chromium removal conventional physicochemical processes such as reverse osmosis, electrochemical process, ion exchange, adsorption on activated carbon, and solidification/stabilization, etc. These disadvantages, such as being expensive, waste product formation and being not environmentally friendly, limit their use. Bioremediation processes have brought a solution to all these problems and have benefited in terms of environment, economy and energy. Thanks to the resistance mechanisms developed by bacterias against heavy metals, they survive in environments with high concentrations of heavy metals. Bioremediation is a promising process to increase the capacity of bacteria to bind chromium metal ion. In this review; Resistance mechanisms such as preventing the entry of metal into the cell, keeping the metal in the cell by binding to proteins, keeping the metals out of the cell, and turning the metal into less toxic form with enzymes are included.
In this study, the efficiencies of some wild and recombinant bacterial species on the removal of chromium will be investigated. The purpose of this review is to summarize bacteria and proteins that bind chromium metal ions effectively.

References

  • Fernandez, P.M., Vinarta, S.C., Bernal, A.R., Cruz, E. L., Figueroa. L.I.C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere, Vol. 208, 139-148.
  • Tekerlekopoulou, A.G., Tsiflikiotou, M., Akritidou, L. Viennas, A., Tsiamis, G., Pavlou, S., Bourtzis, K., Vayenas. D.V. (2013). Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Research, vol. 47, 623-636.
  • Parker, D.L., Borer, P., Bernier-Latmani., R. (2011). The response of Shewanella oneidensis MR-1 to Cr(III) toxicity differs from that to Cr(VI). Frontiers in Microbiology, vol. 2, 1-14.
  • Baral, A., Engelken, R.D. (2002). Chromium-based regulations and greening in metal finishing industries in the USA. Environmental Science & Policy, vol. 5, 121-133.
  • Kumar, V., Dwivedi, S.K. (2019). Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere, vol. 237, 1-11.
  • Witek-Krowiak, A. (2013). Kinetics and equilibrium of copper and chromium ions removal from aqueous solutions using sawdust. Environmental Engineering and Management Journal, vol. 12, 2125-2135.
  • Wong, P.K., S.c. Kwok. (1992). Accumulation of nickel ion (Ni+2) by imıııobilized ceIls of Enterobacter species. Biotechnol Letters, 14:7,629-634 p.
  • Çınar Acar, B. (2018). Doktora Tezi. Endüstriyel Atıksulardan Biyoremediasyon İle Kromun Detoksifikasyonu, Doğal ve Kimyasa/Biyolojik Yöntemlerle Modifiye Edimiş Kil Üzerine Krom Adsorpsiyonunun Merkezi Kompozit Tasarım Yöntemi Kullanılarak İncelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Taran, M., Sisakhtnezhad, S., Azin, T. (2015). Biological removal of nickel (II) by Bacillus sp. KL1 in different conditions: optimization by Taguchi statistical approach. Polish Journal of Chemical Technology, vol.17(3), 29-32.
  • Evgen, E. (2012). Yüksek Lisans Tezi. Pseudomonas Cinsi Bakterilerde Hekzavalent Krom İndirgeme Üzerine Ağır Metallerin Etkisi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • Su, Y. Q., Zhao, Y. J., Wu, N., Chen, Y. E., Zhang, W. J., Cao, D. R. Q, Y. (2018). Chromium removal from solution by five photosynthetic bacteria isolates. Applied Microbiology and Biotechnology, vol. 102, 1983–1995.
  • Kahvecioglu, Ö., Kartal, G., Güven, A., Timur, S. (2003). Metallerin Çevresel Etkileri. İTÜ Metalurji ve Malzeme Mühendisligi Bölümü. İstanbul.
  • Ting, Y. P., Lawson, F. Prince, L. G. (1991). Uptake of cadmium and zinc by the alga Chlorella vulgaris: II Multi-ion stiation. Biotechnology Bioengineering, vol.37, 445-455.
  • HoIan, Z. R., Volesky, B., Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, vol. 41, 819-825.
  • Shumate, S. E., Strandberg, G.W. (1985). Accumulation of Metals By Microbial Cell. In Compherensive Biotechnology, 4, 235-240.
  • Şencan, A. (2006). Yüksek Lisans Tezi. Sulu Çözelti ve Deri Endüstrisi Atıksuyundan Cr(VI) İyonunun Aktif Çamur Biyokütlesi ile Biyosorpsiyonu. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü, Isparta.
  • Volesky, B., May, R., Holan, Z. R. (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology Bioengineering, vol. 41, 826-289.
  • Ergül Ülger, Z. (2016). Ağır Metal İçeren Atıksulardan İzole Edilecek Bakteriler İle Cr(VI) Biyoremediasyonu,” Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara,
  • Koçberber Kılıç, N. (2008). Doktora Tezi. Proteomik Yaklaşımla Atıksu Kaynaklı Mikroorganizmalarda Cr(VI) Direnç Yollarının Araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Bruins, M. R., Kapil, S., Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Enviromental Safety, vol. 45, 198-207.
  • Silver, S. (1996). Bacterial resistance to toxic metal-ions-a review. Gene, vol. 179, 9-19.
  • Rosen, B. P. (2002). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology, Part A vol. 133, 689-693.
  • Gadd, G. M. (1990). Biosorption,” Journal Of Chemistry And Industry. 421-426.
  • Han, N. S., Seo, J. R., Chung, Y.C. (1992). Growth and copper resistance of recombinant Saccharomyces cerevisiae containing a metallothionein gene. Biotechnology Letters, vol. 14, no:1, 7-11.
  • Francisco, R,. Alpoim, M. C., Morais, P. V., (2002). Diversity of chromium-resistant and reducing bacteria in a chromium contaminated activated sludge. Journal of Applied Microbiology, 92: 837–843.
  • Megharaj, M., Avudainayagam, S., Naidu, R., (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47: 51–54.
  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H. (2005). Characterization of a novel Cr(VI) reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology, 50: 266–271. Campos, V. L., Moraga, R., Yanez, J., Zaror, C. A., Mondaca, M. A., (2005). Chromate reduction by Serratia marcescens isolated from tannery effluent. Bulletin of Environmental Contamination and Toxicology, 75: 400–406. Thacker, U., Madamwar, D. (2005). Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World Journal of Microbiology and Biotechnology, 21: 891–899. Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., Chandraraj, K., (2006). Reduction of Cr(VI) by a Bacillus sp. Biotechnology Letter, 28: 247–252. Goulhen, F., Gloter, A., Guyot, F., Bruschi, A., (2006). Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Applied Microbiology and Biotechnology, 71: 892–897. Viamajala, S., Smith, W. A., Sani, R. K., Apel, W. A., Petersen, J. N., Neal, A. L. (2007). Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresource Technology, 98: 612–622.
  • Velásquez, L., Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, vol. 167, 713-716.
  • Srinath, T., Verma, T., Ramteke, P.W., Garg, S.K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, vol. 48, 427-435.
  • Singh, A., Malaviya, P. (2015). Optimization of culture parameters for tannery effluent bioremediation by Bacillus galactosidilyticus APBS5-3,” Journal of Environmental Biology, Vol. 36, no: 5, 1149-1152.
  • Sathishkumar, K., Murugan, K., Benelli, G., Higuchi, A., Rajasekar, A.(2017). Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Annals of Microbiology, vol. 67, 91–98.
  • Robins, K.J., Hooks, D.O., Rehm, B. H. A., Ackerley, D. F. (2013). Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One, vol. 8, 1-8.
  • Özbey, E., Asma, D. (2019). Krom’un Deinococcus radiodurans ve Rekombinantlarına Etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no: 3, 1305-1315.
  • Kiliç, N.K. and Dönmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. . Journal of Hazardous Materials,154, 1019-1024.
  • Zahoor, A., Rehman, A. (2009). Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal Environmental Science (China), 21, 814-820.
  • Polti, M.A., Amoroso, M.J. and Abate, C.M. (2010). Chromate reductase activity in Streptomyces sp. MC1. Journal Genetic Applied Microbiology, 56, 11-18.
  • Caravelli, A.H., Giannuzzi, L. and Zaritzky, N.E. (2008). Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. Journal of Hazardous Materials, 156, 214-222.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şeyma Akkurt This is me 0000-0002-0135-1975

Merve Oğuz This is me 0000-0002-8388-1477

Publication Date April 1, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ARACONF)

Cite

APA Akkurt, Ş., & Oğuz, M. (2020). Rekombinant ve Yabanıl Bakteriler ile Kromun Biyoremediasyonu. Avrupa Bilim Ve Teknoloji Dergisi604-609. https://doi.org/10.31590/ejosat.araconf73