Year 2020, Volume , Issue 19, Pages 722 - 733 2020-08-31

Protein – Protein Etkileşimi Tespit Yöntemleri, Veri Tabanları ve Veri Güvenilirliği
Protein - Protein Interaction Detection Methods, Databases and Data Reliability

Volkan ALTUNTAŞ [1] , Murat GÖK [2]


Önemli biyolojik aktiviteler tek bir molekülün sonucu değil, birbirleriyle etkileşime giren çoklu moleküllerin etkilerinin ürünü olarak ortaya çıkmaktadır. Protein-protein etkileşimlerinin belirlenmesi, ilgili proteinlere ait fonksiyonların tespit edilmesi için önemli bilgi sağlamaktadır. Genlerin ve proteinlerin büyük bir çoğunluğu işlevlerini birbirleriyle etkileşimleri sonucunda oluşturmaktadırlar. Protein-protein etkileşimlerini incelemek için çok sayıda yöntem geliştirilmiştir. Etkileşimlerin tespitinde in vitro, in vivo ve in siliko olarak adlandırılan 3 temel yaklaşım bulunmaktadır. In vitro ve in vivo yöntemlerin maliyet, zaman gibi sınırlamaları bulunur. İn siliko yöntemler deneysel yönlendirme ile maliyet ve zaman kazancı için geliştirilmiştir. Yöntemler sonucunda oluşan veri setleri gürültülüdür, çok sayıda yanlış pozitif ve yanlış negatif değerler içermektedirler. Protein etkileşim tespit yöntemlerindeki gelişmeler hastalıkların tespit edilmesi, model organizmalara ait yolakların ve protein komplekslerinin belirlenmesi gibi birçok alana doğrudan etki etmektedir. Yapılan çalışmalar sonucunda tespit edilen etkileşimler veri tabanlarında saklanmakta ve ücretsiz olarak erişilebilmektedir. Metotların hızlanması ile tespit edilen etkileşim sayısındaki artış, elde edilen bu verilerin analiz edilmesini, bir veya birden fazla metot ile sağlanmasını ve doğruluğunun belirlenmesini önemli hale getirmektedir. Bu çalışmada protein-protein etkileşim tespitinde kullanılan in vitro, in vivo ve in siliko yöntemler ve protein-protein etkileşim veri tabanları incelenmektedir. Tespit yöntemlerinin artıları ve eksileri araştırılmış ve yöntemlerin avantaj ve dezavantajları paylaşılmıştır. Veri tabanlarının içerdiği bilgiler karşılaştırılmış, benzerlik oranları ve sebepleri araştırılmıştır.

Important biological activities do not result from a single molecule but as a result of the effects of multiple molecules interacting with each other. The determination of protein-protein interactions provides important information for determining the functions of the respective proteins. The most majority of genes and proteins function as a result of interactions with each other. Numerous methods have been developed to study protein-protein interactions. In the determination of interactions, there are three basic approaches called in vitro, in vivo, and in silico. In vitro and in vivo methods have limitations such as cost and time. In silico methods have been developed for cost and time savings with experimental guidance. The data sets generated by the methods are noisy and contain a large number of false-positive and false-negative values. Advances in protein interaction detection methods have a direct impact on many areas such as the detection of diseases, pathways of model organisms, and protein complexes. The interactions identified as a result of the studies are stored in the databases and can be accessed free of charge. With the increase in the number of interactions detected by accelerated methods, it became important to analyze the obtained data, verify it with one or more methods, and determine its accuracy. In this study, in vitro, in vivo and in silico methods and protein-protein interaction databases used for determination of protein-protein interaction are examined. The pros and cons of detection methods were investigated and the advantages and disadvantages of the methods were shared. The information contained in the databases was compared, investigated the similarity rates and reasons.

  • Ingber, D. E. (2000). The origin of cellular life. Bioessays, 22(12), 1160-1170.
  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology 4th edition. National Center for Biotechnology Information, Bookshelf.
  • Lu, L., Arakaki, A. K., Lu, H., & Skolnick, J. (2003). Multimeric threading-based prediction of protein–protein interactions on a genomic scale: Application to the Saccharomyces cerevisiae proteome. Genome Research, 13(6a), 1146-1154.
  • Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., ... & Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature, 425(6959), 737-741.
  • Braun, P., & Gingras, A. C. (2012). History of protein–protein interactions: From egg‐white to complex networks. Proteomics, 12(10), 1478-1498.
  • Yan, C., Wu, F., Jernigan, R. L., Dobbs, D., & Honavar, V. (2008). Characterization of protein–protein interfaces. The protein journal, 27(1), 59-70.
  • Nooren, I. M., & Thornton, J. M. (2003). Diversity of protein–protein interactions. The EMBO journal, 22(14), 3486-3492.
  • Zhang, A. (2009). Protein interaction networks: computational analysis. Cambridge University Press.
  • Iqbal, M. (2018). Introductory Chapter: Protein-Protein Interactions and Assays. Protein-Protein Interaction Assays, 1.
  • Klein, S. (2010). The use of biorelevant dissolution media to forecast the in vivo performance of a drug. The AAPS journal, 12(3), 397-406.
  • Yanagida, M. (2002). Functional proteomics; current achievements. Journal of Chromatography B, 771(1-2), 89-106.
  • Berggård, T., Linse, S., & James, P. (2007). Methods for the detection and analysis of protein–protein interactions. Proteomics, 7(16), 2833-2842.
  • Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., & Bork, P. (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417(6887), 399-403.
  • Rishton, G. M. (1997). Reactive compounds and in vitro false positives in HTS. Drug discovery today, 2(9), 382-384.
  • Vivona, S., Gardy, J. L., Ramachandran, S., Brinkman, F. S., Raghava, G. P. S., Flower, D. R., & Filippini, F. (2008). Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends in biotechnology, 26(4), 190-200.
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., ... & Rollinger, J. M. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582-1614.
  • Lipinski, C., & Hopkins, A. (2004). Navigating chemical space for biology and medicine. Nature, 432(7019), 855-861.
  • Smith, H. (2001). Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo. International journal of medical microbiology, 291(6-7), 411-417.
  • Relman, D. A. (1998). Detection and identification of previously unrecognized microbial pathogens. Emerging infectious diseases, 4(3), 382.
  • Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., ... & Qureshi-Emili, A. (2000). A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623-627.
  • Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574.
  • Oliver, S. (2000). Guilt-by-association goes global. Nature, 403(6770), 601-602.
  • Rutherford, S. L. (2000). From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays, 22(12), 1095-1105.
  • Hartman, J. L., Garvik, B., & Hartwell, L. (2001). Principles for the buffering of genetic variation. Science, 291(5506), 1001-1004.
  • Bender, A. L. A. N., & Pringle, J. R. (1991). Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Molecular and cellular biology, 11(3), 1295-1305.
  • Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein expression and purification, 48(1), 1-13.
  • Waugh, D. S. (2005). Making the most of affinity tags. Trends in biotechnology, 23(6), 316-320.
  • Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., & Bork, P. (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417(6887), 399-403.
  • Sinz, A. (2014). The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert review of proteomics, 11(6), 733-743.
  • Rappsilber, J. (2011). The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. Journal of structural biology, 173(3), 530-540.
  • Bruce, J. E. (2012). In vivo protein complex topologies: Sights through a cross‐linking lens. Proteomics, 12(10), 1565-1575.
  • Serpa, J. J., Parker, C. E., Petrotchenko, E. V., Han, J., Pan, J., & Borchers, C. H. (2012). Mass spectrometry-based structural proteomics. European Journal of Mass Spectrometry, 18(2), 251-267.
  • Kuramochi, J., & Sakakibara, Y. (2005, June). Intensive in vitro experiments of implementing and executing finite automata in test tube. In International Workshop on DNA-Based Computers (pp. 193-202). Springer, Berlin, Heidelberg.
  • Dehghan, B. (2016). Synergistic Modeling of in-vitro and in-vivo data via Stochastic Kriging with Qualitative Factors (SKQ).
  • Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature biotechnology, 17(10), 1030-1032.
  • Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D., & Gygi, S. P. (2005). A proteomic strategy for gaining insights into protein sumoylation in yeast. Molecular & Cellular Proteomics, 4(3), 246-254.
  • Graumann, J., Dunipace, L. A., Seol, J. H., McDonald, W. H., Yates, J. R., Wold, B. J., & Deshaies, R. J. (2004). Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Molecular & Cellular Proteomics, 3(3), 226-237.
  • Urh, M., Simpson, D., & Zhao, K. (2009). Affinity chromatography: general methods. In Methods in enzymology (Vol. 463, pp. 417-438). Academic Press.
  • Phizicky, E. M., & Fields, S. (1995). Protein-protein interactions: methods for detection and analysis. Microbiol. Mol. Biol. Rev., 59(1), 94-123.
  • Golemis, E., & Adams, P. D. (Eds.). (2002). Protein-protein interactions: a molecular cloning manual (p. 3). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Ohh, M., Yauch, R. L., Lonergan, K. M., Whaley, J. M., Stemmer-Rachamimov, A. O., Louis, D. N., ... & Iliopoulos, O. (1998). The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Molecular cell, 1(7), 959-968.
  • MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485), 1760-1763.
  • Brown, P. O., & Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nature genetics, 21(1), 33-37.
  • Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., ... & Dairkee, S. H. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature genetics, 20(2), 207-211.
  • Michnick, S. W., Ear, P. H., Landry, C., Malleshaiah, M. K., & Messier, V. (2011). Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein–protein interactions in living cells. In Signal Transduction Protocols (pp. 395-425). Humana Press, Totowa, NJ.
  • Moresco, J. J., Carvalho, P. C., & Yates III, J. R. (2010). Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. Journal of proteomics, 73(11), 2198-2204.
  • Morell, M., Espargaró, A., Avilés, F. X., & Ventura, S. (2007). Detection of transient protein–protein interactions by bimolecular fluorescence complementation: The Abl‐SH3 case. Proteomics, 7(7), 1023-1036.
  • Scott, J. K., & Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science, 249(4967), 386-390.
  • Bass, S., Greene, R., & Wells, J. A. (1990). Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins: Structure, Function, and Bioinformatics, 8(4), 309-314.
  • Sidhu, S. S., Lowman, H. B., Cunningham, B. C., & Wells, J. A. (2000). [21] Phage display for selection of novel binding peptides. In Methods in enzymology (Vol. 328, pp. 333-IN5). Academic Press.
  • Tong, A. H. Y., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Pagé, N., ... & Andrews, B. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550), 2364-2368.
  • Kobe, B., Guncar, G., Buchholz, R., Huber, T., Maco, B., Cowieson, N., ... & Forwood, J. K. (2008). Crystallography and protein–protein interactions: biological interfaces and crystal contacts.
  • Urakubo, Y., Ikura, T., & Ito, N. (2008). Crystal structural analysis of protein–protein interactions drastically destabilized by a single mutation. Protein Science, 17(6), 1055-1065.
  • Scott, D. E., Bayly, A. R., Abell, C., & Skidmore, J. (2016). Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nature Reviews Drug Discovery, 15(8), 533.
  • Barbieri, L., Luchinat, E., & Banci, L. (2015). Protein interaction patterns in different cellular environments are revealed by in-cell NMR. Scientific reports, 5, 14456.
  • Gao, G., Williams, J. G., & Campbell, S. L. (2004). Protein-protein interaction analysis by nuclear magnetic resonance spectroscopy. In Protein-Protein Interactions (pp. 79-91). Humana Press.
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., ... & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325-327.
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., ... & Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research, 34(suppl_1), D668-D672.
  • Shin, W. H., Christoffer, C. W., & Kihara, D. (2017). In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods, 131, 22-32.
  • Shortridge, M. D., & Varani, G. (2015). Structure based approaches for targeting non-coding RNAs with small molecules. Current opinion in structural biology, 30, 79-88.
  • Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of molecular biology, 294(5), 1351-1362.
  • Chen, X. W., & Jeong, J. C. (2009). Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics, 25(5), 585-591.
  • Huang, Y. A., You, Z. H., Chen, X., Chan, K., & Luo, X. (2016). Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC bioinformatics, 17(1), 184.
  • Sun, T., Zhou, B., Lai, L., & Pei, J. (2017). Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC bioinformatics, 18(1), 277.
  • De, S., & Babu, M. M. (2010). Genomic neighbourhood and the regulation of gene expression. Current opinion in cell biology, 22(3), 326-333.
  • Oliver, B., Parisi, M., & Clark, D. (2002). Gene expression neighborhoods. Journal of biology, 1(1), 4.
  • Enright, A. J., Iliopoulos, I., Kyrpides, N. C., & Ouzounis, C. A. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature, 402(6757), 86-90.
  • Thieme, S., & Groth, P. (2013). Genome fusion detection: a novel method to detect fusion genes from SNP-array data. Bioinformatics, 29(6), 671-677.
  • Latysheva, N. S., Oates, M. E., Maddox, L., Flock, T., Gough, J., Buljan, M., ... & Babu, M. M. (2016). Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer. Molecular cell, 63(4), 579-592.
  • Pazos, F., & Valencia, A. (2001). Similarity of phylogenetic trees as indicator of protein–protein interaction. Protein engineering, 14(9), 609-614.
  • Erten, S., Li, X., Bebek, G., Li, J., & Koyutürk, M. (2009). Phylogenetic analysis of modularity in protein interaction networks. BMC bioinformatics, 10(1), 333..
  • Pazos, F., Juan, D., Izarzugaza, J. M., Leon, E., & Valencia, A. (2008). Prediction of protein interaction based on similarity of phylogenetic trees. In Functional Proteomics (pp. 523-535). Humana Press.
  • Grigoriev, A. (2001). A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic acids research, 29(17), 3513-3519.
  • Wu, C., Zhu, J., & Zhang, X. (2012). Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC bioinformatics, 13(1), 182.
  • Chen, R., Zhang, Z., Xue, Z., Wang, L., Fu, M., Lu, Y., ... & Fan, Z. (2015). Protein–protein interaction network of gene expression in the hydrocortisone‐treated keloid. International journal of dermatology, 54(5), 549-554.
  • Papanikolaou, N., Pavlopoulos, G. A., Theodosiou, T., & Iliopoulos, I. (2015). Protein–protein interaction predictions using text mining methods. Methods, 74, 47-53.
  • Badal, V. D., Kundrotas, P. J., & Vakser, I. A. (2018). Natural language processing in text mining for structural modeling of protein complexes. BMC bioinformatics, 19(1), 84.
  • Fleischer Jr, A. B. (2016). Increasing Incidence within PubMed of the Use of the Misspelling. Acta dermato-venereologica, 96(6), 826-827.
  • Garofalo, R., & Schilling, J. L. (2017). Transgender Health Accepted for Indexing in PubMed Central and Inclusion in PubMed.
  • Reyes-Aldasoro, C. C. (2017). The proportion of cancer-related entries in PubMed has increased considerably; is cancer truly “The Emperor of All Maladies”?. PloS one, 12(3).
  • Orchard, S., Kerrien, S., Abbani, S., Aranda, B., Bhate, J., Bidwell, S., ... & Chatr-Aryamontri, A. (2012). Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nature methods, 9(4), 345-350.
  • Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., & Eisenberg, D. (2000). DIP: the database of interacting proteins. Nucleic acids research, 28(1), 289-291.
  • Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., & Eisenberg, D. (2002). DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research, 30(1), 303-305.
  • Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., & Eisenberg, D. (2004). The database of interacting proteins: 2004 update. Nucleic acids research, 32(suppl_1), D449-D451.
  • Gene Ontology Consortium. (2006). The gene ontology (GO) project in 2006. Nucleic acids research, 34(suppl_1), D322-D326.
  • Hermjakob, H., Montecchi‐Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., ... & Margalit, H. (2004). IntAct: an open source molecular interaction database. Nucleic acids research, 32(suppl_1), D452-D455.
  • Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., ... & Jandrasits, C. (2012). The IntAct molecular interaction database in 2012. Nucleic acids research, 40(D1), D841-D846.
  • Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., ... & Castagnoli, L. (2012). MINT, the molecular interaction database: 2012 update. Nucleic acids research, 40(D1), D857-D861.
  • Chatr-Aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., & Cesareni, G. (2007). MINT: the Molecular INTeraction database. Nucleic acids research, 35(suppl_1), D572-D574.
  • Mewes, H. W., Ruepp, A., Theis, F., Rattei, T., Walter, M., Frishman, D., ... & Antonov, A. (2011). MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic acids research, 39(suppl_1), D220-D224.
  • Mewes, H. W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A., ... & Stocker, S. (2000). MIPS: a database for genomes and protein sequences. Nucleic acids research, 28(1), 37-40.
  • Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K., ... & Stark, C. (2017). The BioGRID interaction database: 2017 update. Nucleic acids research, 45(D1), D369-D379.
  • Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic acids research, 34(suppl_1), D535-D539.
  • Winter, A. G., Wildenhain, J., & Tyers, M. (2011). BioGRID REST Service, BiogridPlugin2 and BioGRID WebGraph: new tools for access to interaction data at BioGRID. Bioinformatics, 27(7), 1043-1044.
  • Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., ... & Sonnhammer, E. L. (2014). Pfam: the protein families database. Nucleic acids research, 42(D1), D222-D230.
  • Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids research, 27(1), 29-34.
  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., ... & Jensen, L. J. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.
  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., ... & Kuhn, M. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research, 43(D1), D447-D452.
  • Mering, C. V., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., & Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic acids research, 31(1), 258-261.
  • Han, K., Park, B., Kim, H., Hong, J., & Park, J. (2004). HPID: the human protein interaction database. Bioinformatics, 20(15), 2466-2470.
  • Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., ... & Ibarrola, N. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research, 13(10), 2363-2371.
  • Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., ... & Balakrishnan, L. (2009). Human protein reference database—2009 update. Nucleic acids research, 37(suppl_1), D767-D772.
  • Bader, G. D., Betel, D., & Hogue, C. W. (2003). BIND: the biomolecular interaction network database. Nucleic acids research, 31(1), 248-250.
  • Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T., & Hogue, C. W. (2001). BIND—the biomolecular interaction network database. Nucleic acids research, 29(1), 242-245.
  • Das, J., & Yu, H. (2012). HINT: High-quality protein interactomes and their applications in understanding human disease. BMC systems biology, 6(1), 92.
  • López, Y., Nakai, K., & Patil, A. (2015). HitPredict version 4: comprehensive reliability scoring of physical protein–protein interactions from more than 100 species. Database, 2015.
  • Patil, A., Nakai, K., & Nakamura, H. (2011). HitPredict: a database of quality assessed protein–protein interactions in nine species. Nucleic acids research, 39(suppl_1), D744-D749.
  • Patil, A., & Nakamura, H. (2005). Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC bioinformatics, 6(1), 100.
  • Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., & Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432.
  • Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., & Morris, Q. (2018). GeneMANIA update 2018. Nucleic acids research, 46(W1), W60-W64.
  • Giurgiu, M., Reinhard, J., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, G., ... & Ruepp, A. (2019). CORUM: the comprehensive resource of mammalian protein complexes—2019. Nucleic acids research, 47(D1), D559-D563.
  • Razick, S., Magklaras, G., & Donaldson, I. M. (2008). iRefIndex: a consolidated protein interaction database with provenance. BMC bioinformatics, 9(1), 405.
  • Lehne, B., & Schlitt, T. (2009). Protein-protein interaction databases: keeping up with growing interactomes. Human genomics, 3(3), 291.
  • Turinsky, A. L., Razick, S., Turner, B., Donaldson, I. M., & Wodak, S. J. (2010). Literature curation of protein interactions: measuring agreement across major public databases. Database, 2010.
  • Bhardwaj, N., & Lu, H. (2005). Correlation between gene expression profiles and protein–protein interactions within and across genomes. Bioinformatics, 21(11), 2730-2738.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0003-3144-8724
Author: Volkan ALTUNTAŞ (Primary Author)
Institution: BURSA TEKNİK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-2261-9288
Author: Murat GÖK
Institution: YALOVA ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : August 31, 2020

APA Altuntaş, V , Gök, M . (2020). Protein – Protein Etkileşimi Tespit Yöntemleri, Veri Tabanları ve Veri Güvenilirliği . Avrupa Bilim ve Teknoloji Dergisi , (19) , 722-733 . DOI: 10.31590/ejosat.724390