Year 2020, Volume , Issue 19, Pages 484 - 496 2020-08-31

Using Sustainable Materials to Treat Free Shrinkage of Clay
Sürdürülebilir Malzemelerin Büzülen Killerin İyileştirilmesinde Kullanımı

Abdullah EKİNCİ [1]


Global warming, pandemics, and poverty are the evidences of human destruction of the planet. Excavating and disposing of fertile soils destructively effect wildlife and nature and causes natural disasters such as fires and flooding leading to economic losses and casualties. This study investigates the effects of mechanical and chemical stabilization agents on the shrinkage of marine deposited clays. Three different sustainable materials such as polypropylene fibers, wood ash, and copper slag were used to reduce cement usage in resisting shrinkage problem of the studied clay. Then, the prepared specimen was brought to a slurry state to produce a mix of adequate workability and erase the structure of clay to better highlight the effect of replacement materials. In a controlled environment, the specimens were subjected to free shrinkage and specimen height, diameter, and mass were measured at regular intervals until the dried condition was reached and no further change was monitored. The measurements were then averaged for each set of mix to calculate axial, radial, and volumetric shrinkage strains as well as weight loss. The obtained data were further statistically assessed by evaluating the individual impact of each controllable factor and second-order interaction of cement and fiber. The results indicated that a mix of 1% fiber and 7% cement performed best for reducing the volumetric shrinkage of the clay. Furthermore, the availability of aluminous elements in clay accelerated the chemical interaction with cement and wood ash particles, forming a densified composite structure. This interaction appears to isolate the available moisture in the particles and restrict weight loss, resulting in reduced volumetric shrinkage of wood ash treated specimens. In addition to the environmental and economic benefits of cement usage reduction, using harmful waste materials such as recycled polypropylene fiber, wood ash, and copper slag enable their safe disposal. Incorporating such materials in-situ requires no specific tools; field application is conventional and straightforward.
Dünyamız her geçen gün kirlenmeye devam etmektedir. Sürdürülebilir olmayan tüketim alışkanlıklarmız nedeniyle , doğal kaynaklarımız tükenirken doğaya geri dönülmez tahribatlar vermekteyiz. Bu tahribatlardan sıkça karşılaştığımız,üzerine inşası mümkün olmayan zeminlerin kazılıp doğal hayata kontrolsüzce dökülmesi ve bunun sonucunda ortaya çıkan çevre tahribatıdır. Oluşan durum, özellikle büzülen killerin varlığı üzerinde inşa edilen yapılara zarar vermektedir. Bahse konu zeminlerin büzülme problemlerinin önlenebilmesi amacıyla, bu çalışmada sürdürülebilir malzemelerin kullanımı ön plana çıkartılmıştır. Çalışma kapsamında geri dönüştürülmüş polipropilen fiber, odun külü ve bakır cürufu sırası ile fiziksel ve mekanik katkı malzemeler olarak kullanılmıştır. Yine en etkili iyileştirme yöntemlerinden biri olan çimento ile iyileştirme uygulanıp çimento kullanım miktarının sürdürülebilir malzemeler vasıtası ile azaltılması amaçlanmıştır. Yeniden yapılandırılan kil, çimento, fiber, çimento ile fiber, çimento ile odun külü ve çimento ile bakır cürufu karışımları farklı oranlarda hazırlanıp serbest büzülme deneyine tabi tutulmuşlardır. Deney süresince hazırlanan örneklerin yükseklik, çap ve ağırlıkları kaydedilerek yatay, dikey ve hacimsel büzülme yüzdeleri yanında ağırlık kaybı yüzdeleri değerlendirilmiştir. Elde edilen veriler ışığında bir-yönlü varyans analizi ve iki-yönlü varyans analizi modelleri oluşturulmuştur. Yapılan istatistiksel analizler sonuçunda, %0.5 oranında sadece fiber katkının %7 oranında sadece çimento katkı kadar etkili olduğu bunun yanında %7 çimento ile %1 fiberlerin bir arada kullanılması ile büzülmeyi engellemede en etkili karışım olduğu gözlemlenmiştir. Söz konusu iyileşmenin çimento ile fiberlerin bir arada kullanılması sebebi ile çimentonun fiber yüzeyini kaplaması ve yüzeyde oluşan gerilmeleri fiberlerin parlak yüzeylerine nazaran artırmasından dolayı olduğu görülmüştür. Kulanılan çimento mikatarını %10 ve %20 oranlarında azaltarak, odun külü ve bakır cürufu olarak değiştirilmesi neticesinde odun külünün %10 oranında, bakır curufuna nazaran daha etkili olduğu gözlemlenmiştir. Odun külü ile kildeki alüminin kimyasal etkileşimi hızlandırarak yoğunlaştırılmış kompozit bir yapı oluşturarak parçacıklar içindeki mevcut nemi izole edilerek ağırlık kaybını engelleyip hacimsel büzülmeyi azalttığı görülmüştür. Odun külü ve bakır cürufunun çimento iyileştirmeye nazaran etkisinin az olmasına rağmen çimento kullanımının azaltılması ve bahse konu malzemelerin atık oldukları ve bertaraf edilecekleri düşünüldüğü zaman, killerin büzülmesinin önlenmesinde kullanımları mümkündür.
  • Abdi, M.R., Parsapajouh, A. & Arjomand, M, A. (2008) Effects of random Finer Inclusion on Consolidation, Hydraulic Conductivity, Swelling, Shrinkage Limit and Desiccation Cracking of Clays. International Journal of Civil Engineering, 6, (4) 23-45
  • Al-Bared, M. A. M., & Marto, A. (2017). A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malaysian Journal of Fundamental and Applied Sciences, 13(4), 825-831.
  • Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T., Apiwantragoon, P., Lyles, B. F., and Rock, S. a. (2004) Field water balance of landfill final covers.” Journal of environmental quality, 33(6), 2317–2332.
  • Al-Jabri, K. S., Taha, R. A., Al-Hashmi, A., and Al-Harthy, A. S. (2006). “Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete.” Construction and Building Materials, 20(5), 322–331.
  • Al-Rawas, A. A. (2002). Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags. Canadian geotechnical journal, 39(5), 1150-1167.
  • Al-Rawas, A. A., Taha, R., Nelson, J. D., Al-Shab, B. T., & Al-Siyabi, H. (2002). A comparative evaluation of various additives used in the stabilization of expansive soils. Geotechnical Testing Journal, 25(2), 199-209.
  • ASTM (2013). “Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes.” ASTM C511. West Conshohocken, PA: ASTM.
  • ASTM (2014). “Standard test methods for specific gravity of soil solids by water pycnometer.” ASTM D854. West Conshohocken, PA: ASTM.
  • ASTM (2017a). “Standard test methods for liquid limit, plastic limit, and plasticity ındex of soils.” ASTM D4318, West Conshohocken, PA: ASTM.
  • ASTM (2017b). “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).” ASTM D2487, West Conshohocken, PA: ASTM.
  • ASTM (2018). “Standard specification for Portland cement.” ASTM C150, West Conshohocken, PA: ASTM.
  • ASTM (2008). “Standard test method for length change of hardened hydraulic-cement mortar and concrete.“ C157-08, West Conshohocken, PA: ASTM.
  • ASTM (2017), “Standard Test Methods for Particle-Size Distribution (Gradation) of Sands Using Sieve Analysis,“ D6913 / D6913M-17, West Conshohocken, PA: ASTM.
  • Bharati, S. K., and Chew, S. H. (2016). “Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay.” Geotechnical and Geological Engineering, Springer International Publishing, 34(3), 835–845.
  • Buhler, R. L., & Cerato, A. B. (2007). Stabilization of Oklahoma expansive soils using lime and class C fly ash. In Problematic soils and rocks and in situ characterization (pp. 1-10).
  • Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378.
  • Campbell, A. G. (1990). Recycling and disposing of wood ash. Tappi Journal, 73(9), 141-146.
  • Chen, F., H. (1988) Foundation on Expansive Soils. New York: Elsevier.
  • Clayton, C, R., Xu. M., Whiter, J, T., Ham, A,. & Rust, M. (2010) Stresses in cast-iron pipes due to seasonal shrink-swell of clay soils. Proceedings of the Institution of Civil Engineers - Water Management 163(3):157–162.
  • Ekinci, A. (2019). Effect of preparation methods on strength and microstructural properties of cemented marine clay. Construction and Building Materials, 227, 116690.
  • Ekinci, A., Filho, H. C. S., & Consoli, N. C. (2019). Copper Slag-Hydrated Lime-Portland Cement Stabilized Marine Deposited Clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1-30.
  • Ekinci, A., Scheuermann Filho, H. C., & Consoli, N. C. (2019). Copper Slag-Hydrated Lime-Portland Cement Stabilized Marine Deposited Clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1-30.
  • Etiegni, L., & Campbell, A. G. (1991). Physical and chemical characteristics of wood ash. Bioresource technology, 37(2), 173-178.
  • Fatahi, B., Le, T. M., Fatahi, B., & Khabbaz, H. (2013). Shrinkage properties of soft clay treated with cement and geofibres. Geotechnical and Geological Engineering, 31(5), 1421-1435.
  • Harianto, T., Hayashi, S., Du, Y. J., & Suetsugu, D. (2008) Effects of Fibre Additives on the Desiccation Crack Behavior of the Compacted Akaboku Soil as A Material for Landfill Cover Barrier. Water, Air, & Soil Pollution, 194, (1) 141-149.
  • Keskin, S.N., Uzundurukan, S., Goksan, T.S., Korkmaz, A., & M.Ç. (2006). Estimation of Swelling Treatment of Flag Soils by Anfi Analysis. Soil Mechanics and Foundation Engineering Eleventh National Congress. Karadeniz Technical University.
  • Kunther, W., Lothenbach, B., & Skibsted, J. (2015). Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and concrete research, 69, 37-49.
  • Lodolini, E. M., Polverigiani, S., Cioccolanti, T., Santinelli, A., & Neri, D. (2019). Preliminary Results about the Influence of Pruning Time and Intensity on Vegetative Growth and Fruit Yield of a Semi-Intensive Olive Orchard. Journal of Agricultural Science and Technology, 21(4), 969-980.
  • Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78, 57-70.
  • Mehta, P. K., & Monteiro, P. J. (2017). Concrete microstructure, properties and materials.
  • Miller, Carol, J. & Sami, Rifai. (2004) Fibre reinforcement for waste containment soil liners. Journal of Environmental Engineering 130, (8): 891-895.
  • Mobasher, B., Devaguptapu, R., and Arino, A. . (1996a). “Effect of copper slag on the hydration of blended cementitious mixtures.” ASCE, Materials Engineering Conference, Materials for the New Millenium, ed., K. Chong, ed., 1677–86.
  • Naik, T. R., & Kraus, R. N. (2003). A new source of pozzolanic material. Concrete international, 25(12), 55-62.
  • Naik, T. R., Kraus, R. N., & Siddique, R. (2003). Controlled low-strength materials containing mixtures of coal ash and new pozzolanic material. Materials Journal, 100(3), 208-215
  • Omidi, G, H., Thomas, J, C. & Brown, K, W. (1996) Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water, Air, & Soil Pollution, 89, (1) 91-103.
  • Özkul, Z. H., & Baykal, G. (2006). Shear strength of clay with rubber fibre inclusions. Geosynthetics International, 13(5), 173-180.
  • Pavez, O., Rojas, F., Palacious, J., and Nazer, A. (2004). “Pozzolanic activity of copper slag.” VI international conference on clean technologies for the mining industry, University of Concepcion, Chile.
  • Puppala, A. J., & Musenda, C. (2000). Transportation Research Record. (1736), 134-140.
  • Rajasekaran, G., & Rao, S. N. (1997). Lime stabilization technique for the improvement of marine clay. Journal of Japanese Geotechnical Society: Soils and foundations, 37(2), 97-104.
  • Rao, K. D., Anusha, M., Pranav, P. R. T. & Venkatesh, G. (2012). A laboratory study on the stabilization of marine clay using saw dust and lime. International Journal Of Engineering Science & Advanced Technology, 2(4), 851-862.
  • REMR Technical Note (1998). Influence of Short Polymeric Fibres ib Crack Development of Clays.
  • Rifai, S. & Miller, C. (2004). Fibre Reinforcement for Waste Containment Soil Liners. Journal of Environmental Engineering, 130, (8)
  • Rodrigues, M. A., Lopes, J. I., Ferreira, I. Q. and Arrobas, M. 2018. Olive Tree Response to the Severity of Pruning. Turk.J. Agric. For., 42: 103-113.
  • Rojas, M. I. S., Rivera, J., Frías, M., and Marín, F. (2008). “Use of recycled copper slag for blended cements.” Journal of Chemical Technology & Biotechnology, Wiley-Blackwell, 83(3), 209–217.
  • Shi, C., Meyer, C., and Behnood, A. (2008). “Utilization of copper slag in cement and concrete.” Resources, Conservation and Recycling, 52(10), 1115–1120.
  • Shi, Z., & Lothenbach, B. (2019). The role of calcium on the formation of alkali-silica reaction products. Cement and Concrete Research, 126, 105898
  • Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, conservation and Recycling, 67, 27-33.
  • Steinberg, M. (1998) Geomembranes and the Control of Expansive Soils in Construction. New York: McGraw-Hill.
  • Stolz, J., Boluk, Y., & Bindiganavile, V. (2019). Wood ash as a supplementary cementing material in foams for thermal and acoustic insulation. Construction and Building Materials, 215, 104-113.
  • Taha, R., Al-Rawas, A., Al-Jabri, K., Al-Harthy, A., Hassan, H., and Al-Oraimi, S. (2004). “An overview of waste materials recycling in the Sultanate of Oman.” Resources, Conservation and Recycling, 41(4), 293–306.
  • Tang, C., Bin, S., Wei, G., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fibre reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25, 194-202
  • Tombesi A (2013). Advances in harvesting and pruning of olive trees. La Rivista di Scienza dell’Alimentazione (J Food Sci Nutr) 1:97-103.
  • Venkateswarlu, D., Kumar, M. A., Raju, G. P., & Prasad, D. (2014). A Study On The Lime–Cement Stabilized Marine Clay. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 16(2), 439-444.
  • Vipulanandan, C. & Leung, M. (1991) Seepage Control in Contaminated and Permeable Houston Clay: A Laboratory Study. Hazardous Waste and Hazardous Materials, 8, (1) 17-32.
  • Zain, M. F. M., Islam, M. N., Radin, S. S., and Yap, S. G. (2004). “Cement-based solidification for the safe disposal of blasted copper slag.” Cement and Concrete Composites, 26(7), 845–851.
  • Ziegler, S., Leshchinsky, D., Ling, H.I., & Perry, E.B. (1998). Effect of short Polymeric Fibres on Crack Development in Clay. The Japanese Geotechnical Society, 38, (1)
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-6787-9983
Author: Abdullah EKİNCİ (Primary Author)
Institution: ORTA DOĞU TEKNİK ÜNİVERSİTESİ
Country: Turkey


Thanks The author greatly appreciates the discussions and help from Assoc. Prof. Dr. Ertuğ Aydın from the European University of Lefke. The author also thanks his graduate student, Mr. Doğan Gülaboğlu, for his support in laboratory experiments.
Dates

Publication Date : August 31, 2020

APA Eki̇nci̇, A . (2020). Using Sustainable Materials to Treat Free Shrinkage of Clay . Avrupa Bilim ve Teknoloji Dergisi , (19) , 484-496 . DOI: 10.31590/ejosat.734490