Year 2020, Volume , Issue 20, Pages 506 - 515 2020-12-31

Electric Train Application Study For Catenary-Pantograph Interaction
Katener-Pantograf Etkileşimi İçin Elektrikli Tren Uygulama Çalışması

Şakır PARLAKYILDIZ [1] , Muhsin GENÇOĞLU [2] , Mehmet Sait CENGIZ [3]


Today, electric rail systems that use clean energy and are a fast and reliable means of transportation are used more because of their efficiency. The main purpose of new studies investigating pantograph catenary interaction in Electric Rail Systems is to detect malfunctions. With the spread of high-speed trains in electric rail systems, malfunctions occur in pantograph and catenary systems operating under high current and high voltage. The contact force of the pantograph-catenary system erodes the pantograph surface and arcs occur. For this reason, periodic control is mandatory in pantograph-catenary systems. In this study, new, effective, sensitive, stable, real-time applicable and contactless condition monitoring, analysis, control, and diagnostic methods were investigated for pantograph-catenary systems that provide energy transmission from the electric line to the locomotive in electric trains. A literature search and study application has been carried out for modeling a pantograph-catenary system and analysis of system parameters, instantaneous control of the contact force between the pantograph and catenary to diagnose malfunctions in the pantograph-catenary system. It has been observed that pantograph-catenary interaction is negatively affected and the quality of energy transmission decreases if the system parameters change for any reason. In pantograph-catenary systems, the importance of periodic pantograph control, which will ensure the stable and efficient operation of the system, is understood if the parameters change.
Günümüzde temiz enerji kullanan, hızlı ve güvenilir bir ulaşım aracı olan elektrikli raylı sistemler verimlilikleri nedeniyle daha fazla kullanılmaktadır. Elektrikli Raylı Sistemlerde pantograf katener etkileşimini araştıran yeni çalışmaların temel amacı arızaları tespit etmektir. Elektrikli raylı sistemlerde yüksek hızlı trenlerin yayılmasıyla yüksek akım ve yüksek gerilim altında çalışan pantograf-katener sistemlerinde arızalar meydana gelir. Pantograf -Katener sisteminin temas gücü pantograf yüzeyini aşındırır ve pantografta ark'lar oluşur. Bu nedenle pantograf-katener sistemlerinde periyodik kontrol zorunludur. Bu çalışmada, elektrik hatlarından elektrikli trenlerde lokomotife enerji iletimi sağlayan pantograf-katener sistemleri için yeni, etkili, duyarlı, stabil, gerçek zamanlı uygulanabilir ve temassız durum izleme, analiz, kontrol ve tanı yöntemleri araştırılmıştır. Bir pantograf-katener sisteminin modellenmesi ve sistem parametrelerinin analizi, pantograf-katener sistemindeki arızaları teşhis etmek için pantograf ve katener arasındaki temas kuvvetinin anlık kontrolü için bir literatür ve uygulama çalışması yapılmıştır. Pantograf -Katener etkileşiminin olumsuz etkilendiği ve sistem parametrelerinin herhangi bir nedenle değişmesi durumunda enerji iletiminin kalitesinin düştüğü gözlenmiştir. Pantograf -Katener sistemlerinde, sistemin istikrarlı ve verimli çalışmasını sağlayacak periyodik pantograf kontrolünün önemi, parametrelerin değişmesi durumunda anlaşılmaktadır.
  • [1] Zhang W., Zou D., Tan M., Zhou N., Li R., Mei G. (2018) Review of pantograph and catenary interaction, Front. Mech. Eng., 13(2):311-322.
  • [2] Yaman O., (2014) Pantograf-Katener Sistemlerinde Görüntü İşleme Tabanli Temassız İzleme Yöntemlerinin Geliştirilmesi, Yüksek Lisans Tezi, Firat Üniversitesi, Fen Bilimleri Enstitüsü, 122 s.
  • [3] Karaköse E. (2014) Rayli Sistemlerde Pantograf-Katener Sisteminin Modellenmesi, Simülasyonu ve Ariza Teşhis Yöntemlerinin Geliştirilmesi, Yüksek Lisans Tezi, Firat Üniversitesi, Fen Bilimleri Enstitüsü, 190 s.
  • [4] Parlakyıldız S., Gençoğlu M.T., Cengiz M.S. (2018). Development of Rail Systems from Past to Present. International Conference on Multidisciplinary, Science, Engineering and Technology (2018 Dubai, BAE)
  • [5] Anonim, Türkiye demiryolları sektörünü kalite ve ileri teknoloji düzeyi ile geliştirmek istiyor, www.ephymess.de/uploads/media/InterviewVDB_Vicepresident_Mr._Becker.Pdf Erişim tarihi: Ocak 2020.
  • [6] Cengiz Ç., Yapıcı, İ., Cengiz M.S. (2018). Fourier Analysis in Rail Systems. International Conference on Multidisciplinary, Science, Engineering and Technology (2018 Dubai, BAE),
  • [7] Cengiz M. S., Cengiz Ç. (2018). Numerical analysis of tunnel L lighting maintenance factor. International Islamic University Malaysia Journal, 19(2):154-163.
  • [8] Karakose E., Gençoğlu M.T., Karakose M., Aydin I., Akin E. (2016), A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems, IEEE Transactions on Industrial Informatics 13(2):635-643.
  • [9] Wu G., Wei W., Gao G., Wu J., Zhou Y. (2016) Evolution of the electrical contact of dynamic pantograph-catenary system, J. Mod. Transport, 24(2):132-138.
  • [10] Cengiz Ç. Eren, M., Kaynaklı, M., Yapıcı, I., Gencer, G., Yurci, Y. (2017). Numerical Analysis of Maintanance Factor for Tunnel and Road In Solid State Lighting, International Conference on Multidisciplinary, Science, Engineering and Technology, October 27-29, 2017. Bitlis.
  • [11] Antunes P., Ambrósio J., Pombo J., Facchinetti A. (2020) A new methodology to study the pantograph–catenary dynamics in curved railway tracks, Vehicle System Dynamics, 58(3):425–452.
  • [12] Ide C. K., Olaru S., Ayerbe P. R., Rachid A. (2013) A Nonlinear State Feedback Control Approach for a Pantograph-Catenary System, System Theory, Control and Computing (ICSTCC), 2013 17th International Conference, Sinaia Romania, 268-273.
  • [13] Mahajan P., Garg R., Kumar P. (2012) Sensitivity Analysis of Pantograph-Catenary System Model, Power Electronics(IICPE), 2012 IEEE 5th India International Conference, Delhi, 1-4.
  • [14] Carmine M.P., Marco C.D.S., Domenico G. (2019) Multibody modeling and nonlinear control of the pantograph/catenary system, Archive of Applied Mechanics, 89(1):589-1626.
  • [15] Yifeng B., Jian Z., Wenzheng L., Xiankai L. (2013) Study on Influence of Contact Wire Design Parameters on Contact Characteristics of Pantograph-Catenary, Intelligent Rail Transportation (ICIRT), IEEE International Conference on, Aug. 30 -Sept. 1, 268 – 273.
  • [16] Zhang J., Yang J., Song R. (2012) Impact of Parameters of Pantograph on the Dynamics of Pantograph-catenary and Optimization of Parameters, Power Engineering and Automation Conference, PEAM 2012 IEEE, 18-20 Sept, 1-4.
  • [17] Farhangdoust S., Farahbakhsh M., Shahravi M. (2013) Modeling of Pantograph-Catenary Dynamic Stability, Technical Journal of Engineering and Applied Sciences, 3(14):1486-1491.
  • [18] Ambrosio J., Pombo J., Pereira M. (2013) Optimization of High-Speed Railway Pantographs for Improving Pantograph-Catenary Contact, Theoretical & Applied Mechanics Letters, 3, 013006.
  • [19] Zhou N., Zhang W. (2011) Investigation on Dynamic Performance and Parameter Optimization Design of Pantograph and Catenary System, Finite Elements in Analysis and Design, 288-295.
  • [20] Rachid A. (2011) Pantograph Catenary Control and Observation Using the LMI Approach, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, USA, December 12-15, 2287-2292.
  • [21] Chu W., Song Y. (2020) Study on Dynamic Interaction of Railway Pantograph–Catenary Including Reattachment Momentum Impact, Journal of Vibration, 1-16.
  • [22] Kia S.H., Bartolini F., Mpanda-Mabwe A., Ceschi R. (2010) Pantograph-Catenary Interaction Model Comparison, IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 1584–1589.
  • [23] Huang Y. J. (2004) Discrete Fuzzy Variable Structure Control for Pantograph Position Control, Electrical Engineering, 86:171–177.
  • [24] Benet J., Alberto A., Arias E., Rojo T. (2007) A Mathematical Model of the Pantograph-Catenary Dynamic Interaction with Several Contact Wires, IAENG International Journal of Applied Mathematics, 37:2.
  • [25] Arias E., Alberto A., Montesinos J., Rojo T., Cuartero F., Benet J. (2009) A Mathematical Model of the Static Pantograph/Catenary Interaction, International Journal of Computer Mathematics, 86(2):333–340.
  • [26] Zhou N., Li R., Zhang W. (2009) Investigation of The Influence of The Space Between Two Pantographs on The Dynamic Performance of Pantograph and Catenary System, 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, 20-24 July.
  • [27] Laurent C., Massat J-P., N-Tajan T. M. L., Bianchi J-P., Balmes E. (2013) Pantograph Catenary Dynamic Optimization Based on Multibody and Finite Element Co-simulation Tolls, The International Association for Vehicle System Dynamics IAVSD, 1-10.
  • [28] Song D., Zhang W., He P., Jiang Y., Zhou N. (2013) Reliability Analysis of TSG19-type Pantograph Based on Time-Dependent Parameters, Engineering Failure Analysis, 35:153-163.
  • [29] Schröder K., Ecke W., Kautz M., Willett S., Unterwaditzer, H., Bosselmann, T., Rothhardt, M. (2013) Smart Current Collector-Fibre Optic Hit Detection System for Improved Security on Railway Tracks, Meas. Sci. Technol., 24:1-9.
  • [30] Huan R.H., Zhu W.Q., Ma F., Ying Z.G. (2013) Vertical Dynamics of a Pantograph Carbon-Strip Suspension under Stochastic Contact-Force Excitation, Springer Science-Business Media Dordrecht Nonlinear Dyn.
  • [31] Tur M., Garcia E., Baezaa L., Fuenmayor F.J. (2014) A 3D Absolute Nodal Coordinate Finite Element Model to Compute the Initial Configuration of a Railway Catenary, Engineering Structures, 71:234–243.
  • [32] Sicre C., Cucala A.P., Fernandez-Cardador A. (2014) Real Time Regulation of Efficient Driving of High Speed Trains Based on A Genetic Algorithm and A Fuzzy Model of Manual Driving, Engineering Applications of Artificial Intelligence, 29:79–92.
  • [33] Huan R. H., Zhu W. Q., Ma F., Liu Z. H. (2014) The Effect of High-Frequency Parametric Excitation on a Stochastically Driven Pantograph-Catenary System, Hindawi Publishing Corporation Shock and Vibration, 2014:1-8.
  • [34] Kim J. S., Han J. H. (2011) A Test Study on Interface Dynamics of Current Collection System in High Speed Trains, IJR International Journal of Railway, 4-2, June, 34-41.
  • [35] Benet J., Rojo T., Tendero P., Montesinos J., Gil M.A., Estevez F. (2011) INDICA: An Efficient Tool to Study the Dynamical Pantograph-Catenary Interaction, 9th World Congress on Railway Research, May 22-26, 1-10.
  • [36] Alic C., Miklos C., Miklos I. (2009) Upon The Actual Tendencies in Modeling and Simulating The Behavior of The Pantograph - Catenary Pairing, 49th Anniversary of The Faculty of Technical Sciences, Machine Design, May, 85-90.
  • [37] Massat J. P., Laine J. P., Bobillot A. (2006) Pantograph–Catenary Dynamics Simulation, Vehicle System Dynamics, 44:551–559.
  • [38] Rauter F. G., Pombo J., Ambrosio J., Chalansonnet J., Bobillot A., Pereira M. S. (2007) Contact Model for the Pantograph-Catenary Interaction, Journal of System Design and Dynamics, 1-3.
  • [39] Aydın I., Karaköse E., Karaköse M., Gençoğlu M.T., Akın E. (2013) A new computer vision approach for active pantograph control, 2013 International Conference on Innovations in Intelligent Systems and Applications, 1-5.
  • [40] Karaköse E., Gençoğlu M.T., Karaköse M., Aydin I., Akin E. (2016), A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems, IEEE Transactions on Industrial Informatics 13(2):635-643.
  • [41] Mokrani N., Rachid A. (2013) A Robust Control of Contact Force of Pantograph-Catenary for the High-Speed Train, European Control Conference (ECC), July 17-19, Zurich, Switzerland, 4568-4573.
  • [42] Tan M., Zhou N., Wang J., Zou D., Zhang W., Mei G. (2019) A real-time impact detection and diagnosis system of catenary using measured strains by fibre bragg grating sensors, Vehicle System Dynamics, 57(12):1924–1946.
  • [43] Garg R., Mahajan P., Kumar P. (2013) Effect of Controller Parameters on Pantograph-Catenary System, American International Journal of Research in Science, Technology, Engineering & Mathematics, 233-239.
  • [44] Yamashita Y., Ikeda M. (2012) Advanced Active Control of Contact Force between Pantograph and Catenary for High-Speed Trains, QR of RTRI, 53(1):28-33.
  • [45] Rusu-Anghel S., Miklos C., Averseng J., Tirian G.O. (2010) Control System for Catenary – Pantograph Dynamic Interaction Force, Computational Cybernetics and Technical Informatics (ICCC-CONTI), 2010 International Joint Conference on, 181-186.
  • [46] Song Y., Li, C., Fan L. (2012) Model-independent Solution for Active Contact Force Control of Pantographs in High-Speed Trains, 31. Chinese Control Conference, 7250-7255.
  • [47] Sanchez-Rebollo C., Jimenez-Octavio J.R., Carnicero A. (2013) Active Control Strategy on A Catenary–Pantograph Validated Model, Vehicle System Dynamics, 51(4):554–569.
  • [48] Abdullah M. A., Ibrahim A., Michitsuji Y., Nagai M. (2013) Active Control of High-Speed Railway Vehicle Pantograph Considering Vertical Body Vibration, International Journal of Mechanical Engineering and Technology, 4(6):263-274.
  • [49] Abdullah M. A., Michıtsuji Y., Nagai M., Miyajima N. (2010) Integrated Simulation Between Flexible Body of Catenary and Active Control Pantograph for Contact Force Variation Control, Journal of Mechanical Systems, 3(1):166-177.
  • [50] Abdullah M.A., Michitsuji Y., Nagai M., Venture G. (2011) System Identification of Railway Trains Pantograph for Active Pantograph Simulation, Journal of System Design and Dynamics, 5(5):1141-1154.
  • [51] Abdullah M.A., Michitsuji Y., Nagai M., Miyajima N. (2010) Simulation between Flexible Body of Catenary and Active Control Pantograph for Contact Force Variation Control, Journal of Mechanical Systems, 3(1):166-177.
  • [52] Yan W., Hao Z. J., Q.Zheng T. (2009) Optimizing Active Control Scheme of Highspeed Pantograph, Power Electronics and Motion Control Conference, IPEMC, IEEE 6th International, 2622-2626.
  • [53] Walters S. (2010) Simulation of Fuzzy Control Applied to a Railway Pantograph- Catenary System, KES Proceedings of the 14th International Conference on Knowledge-based and Intelligent Information and Engineering Systems: Part II, 322-330.
  • [54] Bandi P. (2009) High-Speed Rail Pantograph Control System Design, Project Report.
  • [55] Pisano A., Usai E. (2007) Contact Force Estimation and Regulation in Active Pantographs: An Algebraic Observability Approach, 46th IEEE Conference On Decision And Control New Orleans, LA, USA, Dec. 12-14, 4341-4346.
  • [56] Matvejevs A., Matvejevs A. (2010) Pantograph-Catenary System Modeling Using Matlab-Simulink Algorithms, Scientific Journal of Riga Technical University Computer Science. Information Technology and Management Science, 38-44.
  • [57] Xiaodong, Z., Yu, F. (2011) Active Self-Adaptive Control of High-Speed Train Pantograph, Power Engineering and Automation Conference (PEAM), 3:152 – 156.
  • [58] Taran M. F., Rayerbe P., Olaru S., Ticlea A. (2013) Moving Horizon Control and Estimation of a Pantograph-Catenary System, 17th International Conference System Theory Control and Computing, 527-532.
  • [59] Aydın I., Karaköse E., Karaköse M., Gençoğlu M.T., Akın E. (2013) A new computer vision approach for active pantograph control, 2013 International Conference on Innovations in Intelligent Systems and Applications, 1-5.
  • [60] Karakose E., Gençoğlu M.T., Karakose M., Yaman O., Aydin, I., Akin E. (2018) A new arc detection method based on fuzzy logic using S-transform for pantograph–catenary systems, Journal of Intelligent Manufacturing 29(4):839-856.
  • [61] Bryja D., Hyliński A. (2019). An influence of track stiffness discontinuity on pantograph base vibrations and catenary-pantograph dynamic interaction, Studia Geotechnica et Mechanica, 1–14.
  • [62] Wang Z., Guo F., Chen Z., Tang A., Ren Z. (2013) Research on Current-carrying Wear Characteristics of Friction Pair in Pantograph Catenary System, 59th Holm Conference on Electrical Contacts, 1-5.
  • [63] Ding T., Chen G.X., Li Y.M., Yang H.J., He Q.D. (2014) Arc Erosive Characteristics of A Carbon Strip Sliding Against A Copper Contact Wire in A High-Speed Electrified Railway, Tribology International, 79:8–15.
  • [64] Ding T., Chen G., Li Y., He Q., Xiaodong W. X. (2012) Friction and Wear Behavior of Pantograph Strips Sliding Against Copper Contact Wire with Electric Current, AASRI Procedia 2:288-292.
  • [65] Östlund S., Gustafsson A., Buhrkall L., Skoglund M. (2008) Condition Monitoring of Pantograph Contact Strip, Railway Condition Monitoring, 4th IET International Conference on, 1-6.
  • [66] Ocoleanu C. F., Popa I., Manolea G. (2013) Iterative Experimental Procedure for Determining of Heat Transfer Coefficient of Catenary’s Contact Line Wire, Advances in Production, Automation and Transportation Systems, 385-388.
  • [67] Nituca C. (2013) Thermal Analysis of Electrical Contacts from Pantograph–Catenary System for Power Supply of Electric Vehicles, Electric Power Systems Research, 96:211– 217. [68] Zhang, J., Zhang, H., Song, B., Xie, S. and Liu, Z. (2019) A new active control strategy for pantograph in high-speed electrified railways based on Multi-Objective robust control, IEEE Access, 7, 173719-173730.
  • [69] Zhang, J., Liu, W. and Zhang, Z. (2019), Study on characteristics location of pantograph–catenary contact force signal based on wavelet transform, IEEE Transactions on Instrumentation and Measurement, 68(2):402-411.
  • [70] Song X., Yuanpei L., Jingchi W., Can Z., Yang R., Guangning W. (2020) Multi-physics analysis of a novel circular pantograph catenary system for high-speed trains, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
  • [71] Bucca G., Collina A. (2009) A Procedure for the Wear Prediction of Collector Strip and Contact Wire in Pantograph–Catenary System, Wear, 266:46–59.
  • [72] Midya, S., Bormann, D., Schütte, T., Thottappillil, R. (2009) Pantograph Arcing in Electrified Railways—Mechanism and Influence of Various Parameters-Part I: With DC Traction Power Supply, IEEE Transactions on Power Delivery, 24:1931-1939.
  • [73] Facchinetti A., Bruni S. (2012) Hardware-in-the-loop Hybrid Simulation of Pantograph–Catenary Interaction, Journal of Sound and Vibration, June, 2783-2797.
  • [74] Yaman O., Karaköse E., Aydın I., Karaköse M., Akın E. (2017) Pantograf-katener sistemler için bulanık mantık tabanlı belirlenen pantograf modeli kullanılarak ark tespiti yaklaşımı, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(4):724-739.
  • [75] Wei X.K., Meng H.F., He J.H., Jia L.M., Li Z.G. (2020) Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system, Wear, 442-443.
  • [76] Tu C.J., Deng L.P., Chen D., Xiong X.Z., Wang Y.F., Zhu Y. (2017) Preparation of Cf/Cu-C contact strip and wear behaviour under electric current, Materials Science and Tech., 33(1):98-103. [77] Er Ü., Çakır F.H. (2018) Urban light rail transportation systems catenary line anti-icing applications; laboratory and field experiments, Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2):433-442.
  • [78] Guiming M., Wenming F., Guangxiong C., Weihua Z. (2020). Effect of high-density current on the wear of carbon sliders against Cu–Ag wires, Wear, 452–453.
  • [79] Er Ü. (2018) Elektrikli Raylı Ulaşım Araçları Pantograf-Katener Sistemlerinde Karbon Şerit/Bakır Temas Telinin Sürtünme ve Aşınma Davranışlarının İncelenmesi, 4. Uluslararası Raylı Sistemler Mühendisligi Sempozyumu (ISERSE'18), 10-12 Ekim 2018, Karabük, Türkiye
  • [80] Jian-Ping P., Yu Z., Li W., Xiao-Rong G., Ze-Yong W.,Quan-Ke Z., Chao-Yong P., Kai Y. (2009) Dynamic Detection for the Contact Line Gradientin Electrified Railway, High-Power Diode Laser Technology and Applications, San Jose, CA.
  • [81] Midya S., (2009) Conducted and Radiated Electromagnetic Interference in Modern Electrified Railways with Emphasis on Pantograph Arcing, PhD Thesis, Electrical Systems, Stockholm, Sweden.
  • [82] Van O. V., Massat J-P., Laurent C., Balmes E. (2013) Introduction of Variability in Pantograph-Catenary Dynamic Simulations, The International Association for Vehicle System Dynamics (IAVSD), 1-8.
  • [83] Plesca A., (2014) Electric Arc Power Collection System for Electric Traction Vehicles, Electrical Power and Energy Systems, 57:212–221.
  • [84] Plesca A. (2014) Thermal Analysis of Sliding Electrical Contacts with Mechanical Friction in Steady State Conditions, International Journal of Thermal Sciences, 84:125-133. [85] Karakose M., Gençoğlu M.T. (2012) Adaptive fuzzy control approach for dynamic pantograph-catenary interaction, Proceedings of 15th International Conference MECHATRONIKA, 1-5.
  • [86] Karakose E., Gençoğlu M.T. (2013) An analysis approach for condition monitoring and fault diagnosis in pantograph-catenary system, 2013-IEEE International Conference on Systems, Man, and Cybernetics, 1963-1968.
  • [87] Karakose E., Gençoğlu M.T. (2014) An investigation of pantograph parameter effects for pantograph-catenary systems, 2014-IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, 338-343.
  • [88] Gregori S., Tur M., Pedrosa A. Tarancón J.E., Fuenmayor F.J. (2019). A modal coordinate catenary model for the real-time simulation of the pantograph-catenary dynamic interaction, Finite Elements in Analysis and Design 162(1):1–12.
  • [89] Koyama T. (2012) Detection of Pantograph Failures Using Sensor Fixed to Catenary System, Railway Technology Avalanche, 246, Dec. 2012.
  • [90] Zhenghua H., Liang C., Yaozong Z., Zexi Y., Hao F., Tianxu Z. (2019) Robust contact-point detection from pantograph-catenary infrared images by employing horizontal-vertical enhancement operatör, Infrared Physics and Technology. 101:146–155.
  • [91] Midya S., Bormann D., Schütte T., Thottappillil R. (2011) Pantograph Arcing in Electrified Railways—Mechanism and Influence of Various Parameters-Part I: With DC Traction Power Supply, IEEE Transactions on Power Delivery, 1931- 1939.
  • [92] Barmada B., Raugi M., Tucci M., Romano F. (2013) Arc detection in pantographcatenary systems by the use of support vector machines-based classification, Institution of Engineering and Technology, 1–8.
  • [93] Zhu B., Ren Z., Xie W., Guo F., Xia X. (2019). Active nonlinear partial-state feedback control of contacting force for a pantograph–catenary system, ISA Transactions, 91(1):78–89.
  • [94] Liu Y., Chang G. W., Huang H. M. (2010) Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System, IEEE Transactions on Power Delivery, 25(3):2025–2027.
  • [95] Li M., Ze-yong W., Xiao-rong G., Li W., Kai Y. (2009) Edge Detection on Pantograph Slide Image‖ International Congress on Image and Signal Processing, s: 1-3, 2009.
  • [96] ODonnell C., Palacin R., Rosinski J. (2006) Pantograph Damage and Wear Monıtoring System, IEEE Conference on Railway Condition Monitoring, London, England, 178-181. [97] Boguslavskii A. A., Sokolov S. M., (2006) Detecting Objects in Images in Real-Time Computer Vision Systems Using Structured Geometric Models‖, Pleiades Publishing, 32(2006):177-187.
  • [98] Landi A., Menconi L., Sani L. (2006) Hough transform and thermo-vision for monitoring pantograph-catenary system, Proc. Inst. Mech. Eng. Part FJ. Rail Rapid Transit, 220(4):435-447
  • [99] Barmada S., Landi A., Sani L. (2003) Wavelet Multiresolution Analysis for Monitoring the Occurrence of Arcing on Overhead Electrfied Railways, Journal of Rail and Rapid Transit, 217:177-187.
  • [100] Ding T., Chen G.X., Bu J., Zhang W.H. (2011) Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems, Wear, 1629-1636.
  • [101] Yueping L., Wei Q., Ning Z., Dong Z., Yuchen P., Sizhen H., Ye W., Xuemin L., Jim X. C. (2019) A Coarse-to-Fine Detection Method of Pantograph-Catenary Contact Points Using DCNNs, International Federation of Automatic Control Conference-2019, 71–75.
  • [102] Huang S., Zhai Y., Zhang M., Hou X. (2019). Arc detection and recognition in pantograph–catenary system based on convolutional neural network, Information Sciences, 501:363–376.
  • [103] Hallgrímsson A. K. (2013) Dynamic behavior of contact lines for railways with laboratorial model setup according to Norwegian conditions, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Structural Engineering, Master thesis, pp. 129.
  • [104] Midya S., Bormann D., Schütte T., Thottappillil R. (2011) DC Component From Pantograph Arcing in AC Traction System—Influencing Parameters, Impact, and Mitigation Techniques, IEEE Transactions on Electromagnetic Compatibility, 53:18-27.
  • [105] Zhang W., Zhou N., Li R., Mei G., Song D. (2011) Pantograph and Catenary System with Double Pantographs for High-Speed Trains at 350 Km/H or Higher, Journal of Modern Transportation, 7-11.
  • [106] Farhan M.F., Shukor N.S.A., Ahmad M.A., Suid M.H., Ghazali M.R., Jusof M.F.M. (2019) A simplify fuzzy logic controller design based safe experimentation dynamics for Pantograph-Cateary system, Indonesian Journal of Electrical Engineering and Computer Science, 14(2): 903-911.
  • [107] Jie Y., Mingli W. (2011) Development of a Detection System for the Catenary Vibration Monitoring, International Conference of Information Technology, Computer Engineering and Management Sciences, 76-79.
  • [108] Tan M., Zhou N., Cheng Y., Wang J., Zhang W., Zou D. (2019) A temperature-compensated fiber bragg grating sensor system based on digital filtering for monitoring the pantograph-catenary contact force, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(2):187–200.
  • [109] Bobillot A., Delcourt V., Damanche P., Massat J. P. (2006) Pantograph-Catenary: three paths to knowledge, 7th congres on Railway Research, 4-8 June, Montreal, Canada, 2006.
  • [110] Schroder K., Ecke W., Kautz M., Willett S., Jenzer M., Bosselmann T. (2013) An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system, Optics and Lasers in Engineering, 51(2):172-179.
  • [111] Pombo J., Ambrosio J. (2012) Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains, Computers and Structures, 110-111:32–42, November 2012.
  • [112] Yaxing Y., Xuemei Y., Zhongke L., Kaiduan Y. (2008) Non-contact measurement of contact wire, International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Applications, 2008.
  • [113] Parlakyıldız S., Gençoğlu M.T., Cengiz M.S. (2020). Analysis of Failure Detection and Crıterıa in Pantograph-Catenary Interaction, Light and Engineering, 28(in press).
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0003-0885-023X
Author: Şakır PARLAKYILDIZ
Institution: BITLIS EREN UNIVERSITY
Country: Turkey


Orcid: 0000-0002-1774-1986
Author: Muhsin GENÇOĞLU
Institution: FIRAT UNIVERSITY
Country: Turkey


Orcid: 0000-0003-3029-3388
Author: Mehmet Sait CENGIZ (Primary Author)
Institution: Bitlis Eren Universty
Country: Turkey


Supporting Institution This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant EEEAG-118E322.
Project Number This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant EEEAG-118E322.
Thanks This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant EEEAG-118E322.
Dates

Publication Date : December 31, 2020

APA Parlakyıldız, Ş , Gençoğlu, M , Cengız, M . (2020). Electric Train Application Study For Catenary-Pantograph Interaction . Avrupa Bilim ve Teknoloji Dergisi , (20) , 506-515 . DOI: 10.31590/ejosat.759407