Graphene Aerogel Based Nanogenerators for Health Monitoring
Year 2021,
Issue: 21, 665 - 668, 31.01.2021
Onur Ergen
Abstract
Artificial intelligence (AI) and machine learning (ML) lead a new era in remote health monitoring and preventive care, while making ZnO based strain sensor and nanogenerators a very attractive data collection tool. Here, we demonstrate flexible piezotronics strain sensor/nanogenerator, based on chemically modified graphene aerogels to monitor human hand/finger motions as well as gait asymmetries. The I-V characteristic of the sensor shows high sensitivity towards detection of human motion with a good gauge factor of as high as 95 has been demonstrated.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TUBITAK)
Thanks
This research was supported in part by The Scientific and Technological Research Council of Turkey (TUBITAK) and TURKCELL, which provided for the design of the experiment and electrical measurements; Surface Science and Technology Center at Koc University provided material and electrical characterization, Prof. Uğur Unal group’s provide graphene aerogel growth. O.E. acknowledges the support of the University of California at Berkeley and Prof. Alex Zettl Lab for validation of electrical characterization. O.E. acknowledges the support of TURKCELL as well as Isıl Ozkan and Tahsin S. Yaman.
References
- Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.
- Obitayo, W., & Liu, T. (2012). A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 2012.
- Jing, Z., Guang-Yu, Z., & Dong-Xia, S. (2013). Review of graphene-based strain sensors. Chinese Physics B, 22(5), 057701.
- Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., ... & Guo, Z. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 6(45), 12121-12141. [5] J. Zhou, et. al. Flexible piezotronic strain sensor, Nano letters, 8(9), pp.3035-3040, (2008).
- Gullapalli, H., Vemuru, V. S., Kumar, A., Botello‐Mendez, A., Vajtai, R., Terrones, M., ... & Ajayan, P. M. (2010). Flexible piezoelectric ZnO–paper nanocomposite strain sensor. small, 6(15), 1641-1646.
- Liao, Q., Mohr, M., Zhang, X., Zhang, Z., Zhang, Y., & Fecht, H. J. (2013). Carbon fiber–ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale, 5(24), 12350-12355.
- Chen, Q., Sun, Y., Wang, Y., Cheng, H., & Wang, Q. M. (2013). ZnO nanowires–polyimide nanocomposite piezoresistive strain sensor. Sensors and Actuators A: Physical, 190, 161-167.
- Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., ... & Wang, Z. L. (2011). High‐strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced materials, 23(45), 5440-5444.
- Zhang, W., Zhu, R., Nguyen, V., & Yang, R. (2014). Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sensors and Actuators A: Physical, 205, 164-169.
- Sharma, S. K., Rammohan, A., & Sharma, A. (2010). Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays. Journal of colloid and interface science, 344(1), 1-9.
- Chang, P. C., Fan, Z., Wang, D., Tseng, W. Y., Chiou, W. A., Hong, J., & Lu, J. G. (2004). ZnO nanowires synthesized by vapor trapping CVD method. Chemistry of materials, 16(24), 5133-5137.
- Ergen, O., & Zettl, A. K. (2020). High temperature Li-ion battery cells utilizing boron nitride aerogels and boron nitride nanotubes (No. 10,686,227). Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Ergen, O., Celik, E., Unal, A. H., Erdolu, M. Y., Sarac, F. E., & Unal, U. (2020). Real time chemical and mechanical human motion monitoring with aerogel-based wearable sensors. Lab on a Chip, 20(15), 2689-2695.
- Zhou, J., Fei, P., Gu, Y., Mai, W., Gao, Y., Yang, R., ... & Wang, Z. L. (2008). Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano letters, 8(11), 3973-3977.
- Chen, H., Zhu, L., Liu, H., & Li, W. (2012). Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells. Nanotechnology, 23(7), 075402.
- Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley & sons.
- Kucheyev, S. O., Bradby, J. E., Williams, J. S., Jagadish, C., & Swain, M. V. (2002). Mechanical deformation of single-crystal ZnO. Applied Physics Letters, 80(6), 956-958.
- Ting, S. Y., Chen, P. J., Wang, H. C., Liao, C. H., Chang, W. M., Hsieh, Y. P., & Yang, C. C. (2012). Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE. Journal of Nanomaterials, 2012.
Sağlık İzleme için Grafen Aerojel Bazlı Nanojeneratörler
Year 2021,
Issue: 21, 665 - 668, 31.01.2021
Onur Ergen
Abstract
Yapay zeka (AI) ve makine öğrenimi (ML), uzaktan sağlık izleme ve önleyici bakımda yeni bir döneme öncülük ederken, ZnO tabanlı gerinim sensörünü ve nanojeneratörleri çok çekici bir veri toplama aracı haline getiriyor. Burada, insan eli / parmak hareketlerini ve yürüyüş asimetrilerini izlemek için kimyasal olarak modifiye edilmiş grafen aerojellere dayanan esnek piezotronik gerinim sensörü / nanojeneratör gösteriyoruz. Sensörün I-V özelliği, insan hareketinin algılanmasına karşı yüksek hassasiyet , 95 kadar, gösterge faktörü bulunmuştur.
References
- Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.
- Obitayo, W., & Liu, T. (2012). A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 2012.
- Jing, Z., Guang-Yu, Z., & Dong-Xia, S. (2013). Review of graphene-based strain sensors. Chinese Physics B, 22(5), 057701.
- Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., ... & Guo, Z. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 6(45), 12121-12141. [5] J. Zhou, et. al. Flexible piezotronic strain sensor, Nano letters, 8(9), pp.3035-3040, (2008).
- Gullapalli, H., Vemuru, V. S., Kumar, A., Botello‐Mendez, A., Vajtai, R., Terrones, M., ... & Ajayan, P. M. (2010). Flexible piezoelectric ZnO–paper nanocomposite strain sensor. small, 6(15), 1641-1646.
- Liao, Q., Mohr, M., Zhang, X., Zhang, Z., Zhang, Y., & Fecht, H. J. (2013). Carbon fiber–ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale, 5(24), 12350-12355.
- Chen, Q., Sun, Y., Wang, Y., Cheng, H., & Wang, Q. M. (2013). ZnO nanowires–polyimide nanocomposite piezoresistive strain sensor. Sensors and Actuators A: Physical, 190, 161-167.
- Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., ... & Wang, Z. L. (2011). High‐strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced materials, 23(45), 5440-5444.
- Zhang, W., Zhu, R., Nguyen, V., & Yang, R. (2014). Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sensors and Actuators A: Physical, 205, 164-169.
- Sharma, S. K., Rammohan, A., & Sharma, A. (2010). Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays. Journal of colloid and interface science, 344(1), 1-9.
- Chang, P. C., Fan, Z., Wang, D., Tseng, W. Y., Chiou, W. A., Hong, J., & Lu, J. G. (2004). ZnO nanowires synthesized by vapor trapping CVD method. Chemistry of materials, 16(24), 5133-5137.
- Ergen, O., & Zettl, A. K. (2020). High temperature Li-ion battery cells utilizing boron nitride aerogels and boron nitride nanotubes (No. 10,686,227). Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Ergen, O., Celik, E., Unal, A. H., Erdolu, M. Y., Sarac, F. E., & Unal, U. (2020). Real time chemical and mechanical human motion monitoring with aerogel-based wearable sensors. Lab on a Chip, 20(15), 2689-2695.
- Zhou, J., Fei, P., Gu, Y., Mai, W., Gao, Y., Yang, R., ... & Wang, Z. L. (2008). Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano letters, 8(11), 3973-3977.
- Chen, H., Zhu, L., Liu, H., & Li, W. (2012). Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells. Nanotechnology, 23(7), 075402.
- Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley & sons.
- Kucheyev, S. O., Bradby, J. E., Williams, J. S., Jagadish, C., & Swain, M. V. (2002). Mechanical deformation of single-crystal ZnO. Applied Physics Letters, 80(6), 956-958.
- Ting, S. Y., Chen, P. J., Wang, H. C., Liao, C. H., Chang, W. M., Hsieh, Y. P., & Yang, C. C. (2012). Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE. Journal of Nanomaterials, 2012.