Year 2021, Volume , Issue 23, Pages 207 - 221 2021-04-30

Klinik Uygulamalarda İleri Biyomedikal Görüntüleme Teknolojileri
Advanced Biomedical Imaging Technologies In Clinical Applications

Raziye Kübra KUMRULAR [1] , Adem POLAT [2]


Hastalıkların tıbbi tanı ve tedavisinde görüntüleme çok önemli bir yer tutmaktadır. Biyomedikal görüntüleme teknolojileri sayesinde, vücudun içini invaziv olmayan yöntemlerle görüntüleyen tıbbi görüntüleme araçları geliştirilmiştir. Günümüz klinik uygulamalarındaki görüntüleme teknikleri ile iyonize ve iyonize olmayan radyasyonun, insan vücuduyla etkileşimi kullanılarak yüksek çözünürlükte tıbbi görüntüler üretilmektedir. Bu makalede hali hazırda kullanılan ileri biyomedikal görüntüleme teknolojileri kapsamında; Röntgen (x-ray) görüntüleme (x-ray radyografisi), bilgisayarlı tomografi (BT), sayısal meme tomosentezi (SMT), manyetik rezonans görüntüleme (MRI), fonksiyonel manyetik rezonans görüntüleme (fMRI), tek foton emisyonlu bilgisayarlı tomografi (SPECT), pozitron emisyon tomografi (PET), ultrason görüntüleme, Doppler ultrason, elektrik empedansı tomografisi (EIT) ve kızılötesi termal görüntüleme (IRT) sırasıyla incelenmiştir. Bu tekniklerin çalışma prensipleri, faydaları, riskleri, avantajları, dezavantajları ve uygulama alanları ayrıntılarıyla sunulmuştur. İncelenen teknikler için, görüntü kalitesi (mekânsal çözünürlük ve kontrast), radyasyonun vücuda etkisi (iyonizasyon seviyesi) ve sistemin kullanılabilirliği (gerçek zamanlı bilgi ve maliyeti) ve uygulama alanları hakkında karşılaştırmalı bilgiler verilmiştir.
Imaging has an important role in the medical diagnosis and treatment of diseases. Thanks to biomedical imaging technologies, medical imaging tools have been developed that image the inside of the body using non-invasive methods. High-resolution medical images are produced by using the interaction of ionizing and non-ionizing radiation with the human body with imaging techniques in today's clinical applications. In this article, within the scope of advanced biomedical imaging technologies currently used; X-ray (x-ray) imaging (x-ray radiography), computed tomography (CT), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), single photon emission computed tomography (SPECT) Positron emission tomography (PET), ultrasound imaging, Doppler ultrasound, electrical impedance tomography (EIT), and infrared thermal imaging (IRT), respectively. The details of working principles, benefits, risks, advantages, disadvantages, and application areas of these techniques have been presented. For the examined techniques, comparative information about image quality (spatial resolution and contrast), the effect of radiation on the body (ionization level) and the usability (real-time information and cost) of the system and application areas have been given.
  • [1] W. R. Hendee and E. R. Ritenour, Medical imaging physics. John Wiley & Sons, 2003.
  • [2] R. L. Ehman et al., “Blueprint for imaging in biomedical research,” Radiology, vol. 244, no. 1, pp. 12–27, 2007.
  • [3] R. B. Gunderman, X-ray vision: the evolution of medical imaging and its human significance. Oxford University Press, 2012.
  • [4] A. Assmus, “Early history of X rays,” Beam Line, vol. 25, no. 2, pp. 10–24, 1995.
  • [5] E. Samei and D. J. Peck, Hendee’s Physics of Medical Imaging. John Wiley & Sons, 2019.
  • [6] A. B. Wolbarst and W. R. Hendee, “Evolving and experimental technologies in medical imaging,” Radiology, vol. 238, no. 1, pp. 16–39, 2006.
  • [7] E. Bercovich and M. C. Javitt, “Medical Imaging: From Roentgen to the Digital Revolution, and Beyond,” Rambam Maimonides Med. J., vol. 9, no. 4, 2018.
  • [8] R. M. Dunne, A. C. O’Neill, and C. M. Tempany, “Imaging Tools in Clinical Research: Focus on Imaging Technologies,” in Clinical and Translational Science, Elsevier, 2017, pp. 157–179.
  • [9] D. Ganguly, S. Chakraborty, M. Balitanas, and T. Kim, “Medical Imaging: A Review,” in Communications in Computer and Information Science, vol. 78, 2010, pp. 504–516.
  • [10] S. M. Erturk, C. Johnston, C. Tempany-Afdhal, and A. D. Van den Abbeele, “Imaging Tools in Human Research,” in Clinical and Translational Science, Elsevier, 2009, pp. 87–104.
  • [11] A. P. Dhawan, Medical image analysis, vol. 31. John Wiley & Sons, 2011.
  • [12] M. Jensen and J. E. Wilhjelm, “X-ray imaging: Fundamentals and planar imaging.” Report, 2006.
  • [13] Y. I. ÜLMAN and T. B. Olay, “Ülkemiz ve Dünya Radyolojisine Katkılarıyla Dr. Esad Feyzi.” Doktor, 2006.
  • [14] N. B. Smith and A. Webb, Introduction to medical imaging: physics, engineering and clinical applications. Cambridge university press, 2010.
  • [15] F. V Gleeson, “Imaging in chest disease,” Medicine (Baltimore)., vol. 36, no. 3, pp. 132–141, 2008.
  • [16] S. Scott and B. Messer, “Critical care chest radiology,” Surg., vol. 36, no. 12, pp. 694–698, 2018.
  • [17] N. R. Qureshi and F. V Gleeson, “Imaging of pleural disease,” Clin. Chest Med., vol. 27, no. 2, pp. 193–213, 2006.
  • [18] K. K. Moghaddam, T. Taheri, and M. Ayubian, “Bone structure investigation using X-ray and neutron radiography techniques,” Appl. Radiat. Isot., vol. 66, no. 1, pp. 39–43, 2008.
  • [19] L. M. Ørnbjerg and M. Østergaard, “Assessment of structural damage progression in established rheumatoid arthritis by conventional radiography, computed tomography, and magnetic resonance imaging,” Best Pract. Res. Clin. Rheumatol., p. 101481, 2020.
  • [20] C. Mourad, P. Omoumi, J. Malghem, and B. C. Vande Berg, “Conventional Radiography of the Hip Revisited: Correlation with Advanced Imaging,” Magn. Reson. Imaging Clin., vol. 27, no. 4, pp. 661–683, 2019.
  • [21] N. Sundaram, J. Bosley, and G. S. Stacy, “Conventional radiographic evaluation of athletic injuries to the hand,” Radiol. Clin., vol. 51, no. 2, pp. 239–255, 2013.
  • [22] S. Miwa and T. Otsuka, “Practical use of imaging technique for management of bone and soft tissue tumors,” J. Orthop. Sci., vol. 22, no. 3, pp. 391–400, 2017.
  • [23] L. H. Wang, A. M. McKenzie-Brown, and A. Hord, The Handbook of C-Arm Fluoroscopy-Guided Spinal Injections. CRC Press, 2006.
  • [24] P. Hogg, J. Kelly, and C. Mercer, Digital Mammography. Springer, 2015.
  • [25] V. I. Mikla and V. V Mikla, Medical imaging technology. Elsevier, 2013.
  • [26] J. Radon, “1.1 über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Class. Pap. Mod. diagnostic Radiol., vol. 5, p. 21, 2005.
  • [27] C. Ertürk, “Karaciğer transplantasyonu sonrası hepatik arter komplikasyonlarının multidedektör bilgisayarlı Tomografik anjiografi ile değerlendirilmesi,” 2005.
  • [28] L. Romans, Computed Tomography for Technologists: A comprehensive text. Lippincott Williams & Wilkins, 2018.
  • [29] G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part 1. Description of system,” Br. J. Radiol., vol. 46, no. 552, pp. 1016–1022, 1973.
  • [30] C. R. Sidden and K. J. Mortele, “Cystic tumors of the pancreas: ultrasound, computed tomography, and magnetic resonance imaging features,” in Seminars in Ultrasound, CT and MRI, 2007, vol. 28, no. 5, pp. 339–356.
  • [31] T. Y. M. Penaloza et al., “Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT),” J. Forensic Leg. Med., vol. 44, pp. 178–182, 2016.
  • [32] A. Pallaver and P. Honigmann, “The Role of Cone-Beam Computed Tomography (CBCT) Scan for Detection and Follow-Up of Traumatic Wrist Pathologies,” J. Hand Surg. Am., 2019.
  • [33] S. C. Wei, S. Ulmer, M. H. Lev, S. R. Pomerantz, R. G. González, and J. W. Henson, “Value of coronal reformations in the CT evaluation of acute head trauma,” Am. J. Neuroradiol., vol. 31, no. 2, pp. 334–339, 2010.
  • [34] P. M. Young, T. A. Foley, P. A. Araoz, and E. E. Williamson, “Computed tomography imaging of cardiac masses,” Radiol. Clin., vol. 57, no. 1, pp. 75–84, 2019.
  • [35] E. Samei, Computed Tomography: Approaches, Applications, and Operations. Springer Nature, 2020.
  • [36] J. K. Mah, J. C. Huang, and H. Choo, “Practical applications of cone-beam computed tomography in orthodontics,” J. Am. Dent. Assoc., vol. 141, pp. 7S-13S, 2010.
  • [37] J. W. Choi et al., “The Journal of Cardiovascular Computed Tomography year in review–2019,” J. Cardiovasc. Comput. Tomogr., 2020.
  • [38] W. Zhang et al., “Thoracic vertebra fixation with a novel screw-plate system based on computed tomography imaging and finite element method,” Comput. Methods Programs Biomed., vol. 187, p. 104990, 2020.
  • [39] W. Zhao, Z. Zhong, X. Xie, Q. Yu, and J. Liu, “Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study,” Am. J. Roentgenol., vol. 214, no. 5, pp. 1072–1077, 2020.
  • [40] T. Ai et al., “Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases,” Radiology, p. 200642, 2020.
  • [41] R. C. Semelka and J. Elias, Health care reform in radiology, vol. 7. Wiley Online Library, 2013.
  • [42] A. Tagliafico, N. Houssami, and M. Calabrese, Digital breast tomosynthesis: a practical approach. Springer, 2016.
  • [43] L. T. Niklason et al., “Digital tomosynthesis in breast imaging.,” Radiology, vol. 205, no. 2, pp. 399–406, 1997.
  • [44] A. Polat and I. Yildirim, “An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses,” J. Xray. Sci. Technol., vol. 26, no. 3, pp. 347–360, 2018.
  • [45] J. M. Park, E. A. Franken Jr, M. Garg, L. L. Fajardo, and L. T. Niklason, “Breast tomosynthesis: present considerations and future applications,” Radiographics, vol. 27, no. suppl_1, pp. S231–S240, 2007.
  • [46] S. M. Friedewald, “Breast tomosynthesis: practical considerations,” Radiol. Clin., vol. 55, no. 3, pp. 493–502, 2017.
  • [47] R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science (80-. )., vol. 171, no. 3976, pp. 1151–1153, 1971.
  • [48] R. Damadian, K. Zaner, D. Hor, and T. DiMaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci., vol. 71, no. 4, pp. 1471–1473, 1974.
  • [49] P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature, vol. 242, no. 5394, pp. 190–191, 1973.
  • [50] P. Mansfield and A. A. Maudsley, “Medical imaging by NMR,” Br. J. Radiol., vol. 50, no. 591, pp. 188–194, 1977.
  • [51] R. C. Hawkes, G. N. Holland, W. S. Moore, and B. S. Worthington, “Nuclear magnetic resonance (NMR) tomography of the brain: a preliminary clinical assessment with demonstration of pathology.,” J. Comput. Assist. Tomogr., vol. 4, no. 5, pp. 577–586, 1980.
  • [52] M. A. Brown and R. C. Semelka, MRI: basic principles and applications. John Wiley & Sons, 2011.
  • [53] H. Kasban, M. A. M. El-Bendary, and D. H. Salama, “A comparative study of medical imaging techniques,” Int. J. Inf. Sci. Intell. Syst., vol. 4, no. 2, pp. 37–58, 2015.
  • [54] A. Stabile et al., “Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review,” Eur. Urol. Oncol., 2020.
  • [55] D. Di Nardo, G. Gambarini, S. Capuani, and L. Testarelli, “Nuclear magnetic resonance imaging in endodontics: a review,” J. Endod., vol. 44, no. 4, pp. 536–542, 2018.
  • [56] C. Leandri et al., “Contribution of magnetic resonance imaging to the management of esophageal diseases: A systematic review,” Eur. J. Radiol., vol. 120, p. 108684, 2019.
  • [57] A. Sørensen and M. Sinding, “Placental Magnetic Resonance Imaging: A Method to Evaluate Placental Function In Vivo,” Obstet. Gynecol. Clin., vol. 47, no. 1, pp. 197–213, 2020.
  • [58] P. Wintermark, “The role of brain MRI scanning in the newborn,” Paediatr. Child Health (Oxford)., vol. 22, no. 4, pp. 155–159, 2012.
  • [59] S. L. Laifer-Narin, W. F. Genestine, N. C. Okechukwu, E. M. Hecht, and J. H. Newhouse, “The role of computed tomography and magnetic resonance imaging in gynecologic oncology,” PET Clin., vol. 13, no. 2, pp. 127–141, 2018.
  • [60] L. Lonzetti et al., “Magnetic resonance imaging of interstitial lung diseases: A state-of-the-art review,” Respir. Med., 2019.
  • [61] M. Dennis, M. Ugander, R. Kozor, and R. Puranik, “Cardiovascular Magnetic Resonance Imaging of Inherited Heart Conditions,” Hear. Lung Circ., 2019.
  • [62] P. Dirix, K. Haustermans, and V. Vandecaveye, “The value of magnetic resonance imaging for radiotherapy planning,” in Seminars in radiation oncology, 2014, vol. 24, no. 3, pp. 151–159.
  • [63] M. M. A. El Atta, T. A. Amer, G. M. Gaballa, and N. T. M. El-Sayed, “Multi-phasic CT versus dynamic contrast enhanced MRI in characterization of parotid gland tumors,” Egypt. J. Radiol. Nucl. Med., vol. 47, no. 4, pp. 1361–1372, 2016.
  • [64] P. Jezzard, P. M. Matthews, and S. M. Smith, Functional MRI: an introduction to methods, vol. 61. Oxford university press Oxford, 2001.
  • [65] S. H. Faro and F. B. Mohamed, Functional MRI: basic principles and clinical applications. Springer Science & Business Media, 2006.
  • [66] E. T. Mandeville, C. Ayata, Y. Zheng, and J. B. Mandeville, “Translational MR neuroimaging of stroke and recovery,” Transl. Stroke Res., vol. 8, no. 1, pp. 22–32, 2017.
  • [67] E. D. Bigler, “Magnetic resonance imaging in the evaluation of cognitive function,” Pediatr. Blood Cancer, vol. 61, no. 10, pp. 1724–1728, 2014.
  • [68] K. Rubia, “Functional brain imaging across development,” Eur. Child Adolesc. Psychiatry, vol. 22, no. 12, pp. 719–731, 2013.
  • [69] M. Gabriel, N. P. Brennan, K. K. Peck, and A. I. Holodny, “Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning,” Neuroimaging Clin., vol. 24, no. 4, pp. 557–571, 2014.
  • [70] S. Hertz, A. Roberts, and R. D. Evans, “Radioactive Iodine as an Indicator in the Study of Thyroid Physiology.,” Proc. Soc. Exp. Biol. Med., vol. 38, no. 4, pp. 510–513, 1938.
  • [71] F. A. Mettler Jr and M. J. Guiberteau, Essentials of Nuclear Medicine Imaging: Expert Consult-Online and Print. Elsevier Health Sciences, 2012.
  • [72] A. Giussani, Imaging in nuclear medicine. Springer, 2013.
  • [73] R. Lecomte, “Novel detector technology for clinical PET,” Eur. J. Nucl. Med. Mol. Imaging, vol. 36, no. 1, pp. 69–85, 2009.
  • [74] T. D. Poeppel, B. J. Krause, T. A. Heusner, C. Boy, A. Bockisch, and G. Antoch, “PET/CT for the staging and follow-up of patients with malignancies,” Eur. J. Radiol., vol. 70, no. 3, pp. 382–392, 2009.
  • [75] S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol., vol. 49, no. 3, p. R13, 2004.
  • [76] L. Livieratos, “Basic principles of SPECT and PET imaging,” in Radionuclide and Hybrid Bone Imaging, Springer, 2012, pp. 345–359.
  • [77] E. R. McVeigh, “Emerging imaging techniques,” Circ. Res., vol. 98, no. 7, pp. 879–886, 2006.
  • [78] C. Farrow and G. King, “SPECT Ventilation Imaging in Asthma,” in Seminars in nuclear medicine, 2019, vol. 49, no. 1, pp. 11–15.
  • [79] C. M. Gomes, A. J. Abrunhosa, P. Ramos, and E. K. J. Pauwels, “Molecular imaging with SPECT as a tool for drug development,” Adv. Drug Deliv. Rev., vol. 63, no. 7, pp. 547–554, 2011.
  • [80] S. Chua, G. Gnanasegaran, and G. J. R. Cook, “Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases,” in Seminars in nuclear medicine, 2009, vol. 39, no. 6, pp. 416–430.
  • [81] N. A. Gharibkandi and S. J. Hosseinimehr, “Radiotracers for imaging of Parkinson’s disease,” Eur. J. Med. Chem., vol. 166, pp. 75–89, 2019.
  • [82] Z. Lee, K. K. Nagano, J. L. Duerk, D. B. Sodee, and D. L. Wilson, “Automatic registration of MR and SPECT images for treatment planning in prostate cancer,” Acad. Radiol., vol. 10, no. 6, pp. 673–684, 2003.
  • [83] J. M. Noble and N. Scarmeas, “Application of Pet Imaging to Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment1,” Int. Rev. Neurobiol., vol. 84, pp. 133–149, 2009.
  • [84] T. Akhurst and R. Chisin, “Hybrid PET/CT machines: optimized PET machines for the new millennium?,” J. Nucl. Med., vol. 41, no. 5, pp. 961–962, 2000.
  • [85] W. Xiao-Xue, H. Xinyue, and Z. Lijun, “Whole body FDG-PET/CT for the assessment of bone marrow infiltration in patients with newly diagnosed lymphoma,” Med. Clin. (Barc)., 2019.
  • [86] J. M. Zaucha, S. Chauvie, R. Zaucha, A. Biggii, and A. Gallamini, “The role of PET/CT in the modern treatment of Hodgkin lymphoma,” Cancer Treat. Rev., 2019.
  • [87] M. Beheshti, “18F-Sodium Fluoride PET/CT and PET/MR Imaging of Bone and Joint Disorders,” PET Clin., vol. 13, no. 4, pp. 477–490, 2018.
  • [88] E. Kothekar, W. Y. Raynor, A. Al-Zaghal, V. S. Jonnakuti, T. J. Werner, and A. Alavi, “Evolving role of PET/CT-MRI in assessing muscle disorders,” PET Clin., vol. 14, no. 1, pp. 71–79, 2019.
  • [89] W. Chen, M. M. Sajadi, and V. Dilsizian, “Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and CT angiography for the diagnosis of cardiac device infections,” JACC Cardiovasc. Imaging, vol. 11, no. 11, pp. 1679–1691, 2018.
  • [90] J. Lu et al., “Impact of PET/CT on radiation treatment in patients with esophageal cancer: A systematic review,” Crit. Rev. Oncol. Hematol., vol. 107, pp. 128–137, 2016.
  • [91] J. W. Wachsmann and V. H. Gerbaudo, “Thorax: normal and benign pathologic patterns in FDG-PET/CT imaging,” PET Clin., vol. 9, no. 2, pp. 147–168, 2014.
  • [92] S. A. Shamim, D. A. Torigian, and R. Kumar, “PET, PET/CT, and PET/MR imaging assessment of breast cancer,” PET Clin., vol. 3, no. 3, pp. 381–393, 2008.
  • [93] M. G. Van der Vaart, R. Meerwaldt, R. Slart, G. M. van Dam, R. A. Tio, and C. J. Zeebregts, “Application of PET/SPECT imaging in vascular disease,” Eur. J. Vasc. Endovasc. Surg., vol. 35, no. 5, pp. 507–513, 2008.
  • [94] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements. CRC press, 2015.
  • [95] C. J. Harvey, J. M. Pilcher, R. J. Eckersley, M. J. K. Blomley, and D. O. Cosgrove, “Advances in ultrasound,” Clin. Radiol., vol. 57, no. 3, pp. 157–177, 2002.
  • [96] Y. Lemoigne, A. Caner, and G. Rahal, Physics for medical imaging applications, vol. 240. Springer Science & Business Media, 2007.
  • [97] S. P. Arjunan and M. C. Thomas, “A Review of Ultrasound Imaging Techniques for the Detection of Down Syndrome,” IRBM, 2019.
  • [98] N. Zhang, H. Dong, P. Wang, Z. Wang, Y. Wang, and Z. Guo, “The value of obstetric ultrasound in screening fetal nervous system malformation,” World Neurosurg., 2020.
  • [99] M. Meola, I. Petrucci, and C. Ronco, Ultrasound imaging in acute and chronic kidney disease. Karger Medical and Scientific Publishers, 2016.
  • [100] D. Koundal, S. Gupta, and S. Singh, “Computer-aided diagnosis of thyroid nodule: a review,” Int. J. Comput. Sci. Eng. Surv., vol. 3, no. 4, p. 67, 2012.
  • [101] J. Virmani, V. Kumar, N. Kalra, and N. Khandelwal, “Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound,” J. Digit. Imaging, vol. 27, no. 4, pp. 520–537, 2014.
  • [102] A. Jalalian, S. B. T. Mashohor, H. R. Mahmud, M. I. B. Saripan, A. R. B. Ramli, and B. Karasfi, “Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review,” Clin. Imaging, vol. 37, no. 3, pp. 420–426, 2013.
  • [103] U. R. Acharya, L. Saba, F. Molinari, S. Guerriero, and J. S. Suri, “Ovarian tumor characterization and classification using ultrasound: A new online paradigm,” in Ovarian neoplasm imaging, Springer, 2013, pp. 413–423.
  • [104] R. Simard, “Ultrasound Imaging of Orthopedic Injuries,” Emerg. Med. Clin., vol. 38, no. 1, pp. 243–265, 2020.
  • [105] T. L. Szabo, Diagnostic ultrasound imaging: inside out. Academic Press, 2004.
  • [106] E. K. Sung, B. N. Setty, and I. Castro-Aragon, “Sonography of the pediatric scrotum: emphasis on the Ts—torsion, trauma, and tumors,” Am. J. Roentgenol., vol. 198, no. 5, pp. 996–1003, 2012.
  • [107] J.-J. Chen, S.-Y. Fu, C.-S. Chiang, J.-H. Hong, and C.-K. Yeh, “A preclinical study to explore vasculature differences between primary and recurrent tumors using ultrasound Doppler imaging,” Ultrasound Med. Biol., vol. 39, no. 5, pp. 860–869, 2013.
  • [108] M.-J. Yoon, E. Kim, S.-J. Lee, Y.-M. Bae, S. Kim, and S.-H. Park, “Pulpal blood flow measurement with ultrasound Doppler imaging,” J. Endod., vol. 36, no. 3, pp. 419–422, 2010.
  • [109] T.-Y. Hsiao, C.-L. Wang, C.-N. Chen, F.-J. Hsieh, and Y.-W. Shau, “Noninvasive assessment of laryngeal phonation function using color Doppler ultrasound imaging,” Ultrasound Med. Biol., vol. 27, no. 8, pp. 1035–1040, 2001.
  • [110] M. B. McCarville, “Imaging techniques used in the diagnosis of pediatric tumors,” in Pediatric malignancies: Pathology and imaging, Springer, 2015, pp. 7–18.
  • [111] S. Stefanesco, C. Schlumberger, and M. Schlumberger, “Sur la distribution électrique potentielle autour d’une prise de terre ponctuelle dans un terrain à couches horizontales, homogènes et isotropes,” J. Phys. le Radium, vol. 1, no. 4, pp. 132–140, 1930.
  • [112] R. H. Bayford, “Bioimpedance tomography (electrical impedance tomography),” Annu. Rev. Biomed. Eng., vol. 8, pp. 63–91, 2006.
  • [113] V. Chitturi and N. Farrukh, “Spatial resolution in electrical impedance tomography: A topical review,” J. Electr. Bioimpedance, vol. 8, no. 1, pp. 66–78, 2019.
  • [114] G. A. Gray, “A variational study of the electrical impedance tomography problem,” 2002.
  • [115] B. H. Brown and A. D. Seagar, “The Sheffield data collection system,” Clin. Phys. Physiol. Meas., vol. 8, no. 4A, p. 91, 1987.
  • [116] D. Holder, Electrical impedance tomography: methods, history and applications. CRC Press, 2004.
  • [117] D. T. Nguyen, C. Jin, A. Thiagalingam, and A. L. McEwan, “A review on electrical impedance tomography for pulmonary perfusion imaging,” Physiol. Meas., vol. 33, no. 5, p. 695, 2012.
  • [118] V. A. Cherepenin et al., “Three-dimensional EIT imaging of breast tissues: system design and clinical testing,” IEEE Trans. Med. Imaging, vol. 21, no. 6, pp. 662–667, 2002.
  • [119] Y. Zou and Z. Guo, “A review of electrical impedance techniques for breast cancer detection,” Med. Eng. Phys., vol. 25, no. 2, pp. 79–90, 2003.
  • [120] L. Eadie, A. Bagshaw, R. Bayford, C. Binnie, and D. Holder, “Electrical impedance tomography imaging of epileptic activity in humans,” Neuroimage, vol. 13, no. 6, p. 1314, 2001.
  • [121] P. Davies, S. Yasin, S. Gates, D. Bird, and C. Silvestre, “Clinical scenarios of the application of electrical impedance tomography in paediatric intensive care,” Sci. Rep., vol. 9, no. 1, pp. 1–8, 2019.
  • [122] E. F. J. Ring, “The historical development of temperature measurement in medicine,” Infrared Phys. Technol., vol. 49, no. 3, pp. 297–301, 2007.
  • [123] J. D. Hardy, “The radiation of heat from the human body: I. An instrument for measuring the radiation and surface temperature of the skin,” J. Clin. Invest., vol. 13, no. 4, pp. 593–604, 1934.
  • [124] F. Ring, “Thermal imaging today and its relevance to diabetes.” SAGE Publications, 2010.
  • [125] E. Sousa, R. Vardasca, S. Teixeira, A. Seixas, J. Mendes, and A. Costa-Ferreira, “A review on the application of medical infrared thermal imaging in hands,” Infrared Phys. Technol., vol. 85, pp. 315–323, 2017.
  • [126] M. Vollmer and K.-P. Möllmann, Infrared thermal imaging: fundamentals, research and applications. John Wiley & Sons, 2017.
  • [127] B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol., vol. 55, no. 4, pp. 221–235, 2012.
  • [128] S. G. Kandlikar et al., “Infrared imaging technology for breast cancer detection–Current status, protocols and new directions,” Int. J. Heat Mass Transf., vol. 108, pp. 2303–2320, 2017.
  • [129] A. Lozano III and F. Hassanipour, “Infrared imaging for breast cancer detection: An objective review of foundational studies and its proper role in breast cancer screening,” Infrared Phys. Technol., vol. 97, pp. 244–257, 2019.
  • [130] S. Bagavathiappan et al., “Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique,” J. Diabetes Sci. Technol., vol. 4, no. 6, pp. 1386–1392, 2010.
  • [131] S. Bagavathiappan et al., “Infrared thermal imaging for detection of peripheral vascular disorders,” J. Med. physics/Association Med. Phys. India, vol. 34, no. 1, p. 43, 2009.
  • [132] I. A. Shevelev, “Functional imaging of the brain by infrared radiation (thermoencephaloscopy),” Prog. Neurobiol., vol. 56, no. 3, pp. 269–305, 1998.
  • [133] H. Fikackova and E. Ekberg, “Can infrared thermography be a diagnostic tool for arthralgia of the temporomandibular joint?,” Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology, vol. 98, no. 6, pp. 643–650, 2004.
  • [134] J.-Y. Park, J. K. Hyun, and J.-B. Seo, “The effectiveness of digital infrared thermographic imaging in patients with shoulder impingement syndrome,” J. shoulder Elb. Surg., vol. 16, no. 5, pp. 548–554, 2007.
  • [135] L. F. Cherkas, L. Carter, T. D. Spector, K. J. Howell, C. M. Black, and A. J. MacGregor, “Use of thermographic criteria to identify Raynaud’s phenomenon in a population setting.,” J. Rheumatol., vol. 30, no. 4, pp. 720–722, 2003.
  • [136] A. Manginas et al., “Right ventricular endocardial thermography in transplanted and coronary artery disease patients: first human application,” J. Invasive Cardiol., vol. 22, no. 9, p. 400, 2010.
  • [137] M. Sniegowski, M. Erlanger, R. Velez-Montoya, and J. L. Olson, “Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients,” Clin. Ophthalmol. (Auckland, NZ), vol. 9, p. 461, 2015.
  • [138] M. C. Ergene, A. Bayrak, and M. Ceylan, “Tracking the injury recovery of professional football players with infrared thermography: Preliminary Study,” Avrupa Bilim ve Teknol. Derg., pp. 207–213, 2020.
  • [139] H. F. Carlak, N. G. Gencer, and C. Besikci, “Theoretical assessment of electro-thermal imaging: A new technique for medical diagnosis,” Infrared Phys. Technol., vol. 76, pp. 227–234, 2016.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-0976-3683
Author: Raziye Kübra KUMRULAR (Primary Author)
Institution: University of Southampton
Country: United Kingdom


Orcid: 0000-0002-5662-4141
Author: Adem POLAT
Institution: ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : April 30, 2021

APA Kumrular, R , Polat, A . (2021). Klinik Uygulamalarda İleri Biyomedikal Görüntüleme Teknolojileri . Avrupa Bilim ve Teknoloji Dergisi , (23) , 207-221 . DOI: 10.31590/ejosat.840321