Research Article
BibTex RIS Cite

The Effect of Salt Stress on Root Development and Architecture in Common Grasspea (Lathyrus sativus L.)

Year 2021, Issue: 23, 793 - 799, 30.04.2021
https://doi.org/10.31590/ejosat.871122

Abstract

Plant root development and architecture are experiencing a period of increased interest due to climate change and increasing drought stress pressure. It is known that root has a 3-dimensional and complex developmental system, just like above-ground organs. Determination of abiotic stress factors affecting root architecture and development in forage legume species is essential for developing abiotic stress-tolerant cultivars and sustainable agricultural production. In this study, it was aimed to investigate the effect of 0- to 300 mM salt (NaCl) doses on early root development, root architecture, and endosperm usage ratios in two different common grasspea cultivars (Lathyrus sativus L.) with known basic developmental differences. As a result of the study performed with the modified cigar-roll technique, it was observed that in general, 100 to 150 mM and above doses inhibit root growth. The number and length of roots are affected parallel to each other. It was observed that the genotypic differences between the cultivars for the measured parameters related to root development were also reflected in the results. Different cultivars had different levels of tolerance, and the total number and length of roots affect the salt stress inhibition. As a result of the stress encountered in the seedling stage, it was observed that the seed endosperm usage ratio decreased up to 4-fold. It has been observed that evaluation of salt stress tolerance at the seedling stage may shed light on genotypic differences for germination and early development speed, and maybe important for earliness.

Thanks

The author is grateful to Semih Acikbas for his help with experiments and measurements

References

  • Ahmad, P., Azooz, M. M., & Prasad, M. N. V. (2013). Salt stress in plants. Heidelberg: Springer.
  • Ahmadi, J., Vaezi, B., & Pour-Aboughadareh, A. (2015). Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biologist, 9(1), 29-34.
  • Akdağoğlu, M., Bayhan, Y.,& Baran, M.F. (2020). II. Ürün Ayçiçeği Üretiminde Farklı Toprak İşleme Yöntemlerinin Teknik Olarak Değerlendirilmesi. European Journal of Science and Technology, (20), 334-342.
  • Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231(2), 243-254.
  • Ariel, F. D., Diet, A., Crespi, M., & Chan, R. L. (2010). The LOB-like transcription factor MtLBD1 controls Medicago truncatula root architecture under salt stress. Plant signaling & behavior, 5(12), 1666-1668.
  • Bektaş, H., & Waines, J.G. (2020). Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). Türkiye Tarımsal Araştırmalar Dergisi, 7(1), 78-84.
  • Bektas, H. (2015). Determination of Root Traits in Wild, Landrace and Modern Wheats and Dissection of Quantitative Trait Loci (QTL) for Root Characters in Bread Wheat (Doctoral dissertation, UC Riverside).
  • Burridge, J., Jochua, C. N., Bucksch, A., & Lynch, J. P. (2016). Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Research, 192, 21-32.
  • Colombi, T., Kirchgessner, N., Le Marié, C. A., York, L. M., Lynch, J. P., & Hund, A. (2015). Next generation shovelomics: set up a tent and REST. Plant and Soil, 388(1), 1-20.
  • Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887.
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer, New York, NY.
  • Koca, H., Bor, M., Özdemir, F., & Türkan, İ. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60(3), 344-351.
  • Kwon, O. K., Mekapogu, M., & Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60(6), 831-839.
  • Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2), 347-357.
  • McMaster, G. S., & Wilhelm, W. (2003). Phenological responses of wheat and barley to water and temperature: improving simulation models. Journal of Agricultural Science, 141, 129-147.
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 153(1), 88-97.
  • Noto, F., Poma, I., Gristina, L., Venezia, G., & Ferrotti, F. (2001, July). Bioagronomic and qualitative characteristics in Lathyrus sativus lines. In Proceedings 4th European Conference on Grain Legumes (eds. AEP) (pp. 8-12). Cracow, Poland.
  • Önal Aşçı, Ö., & Zambi, H. Farklı NaCl konsantrasyonlarının bazı bezelye çeşit ve genotiplerinde bitki gelişimine etkisi. Anadolu Tarım Bilimleri Dergisi, 35(3), 274-284.
  • Özkorkmaz, F., & Yılmaz, N. (2017). Farklı tuz konsantrasyonlarının fasulye (Phaseolus vulgaris L.) ve börülcede (Vigna unguiculata L.) çimlenme üzerine etkilerinin belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 196-200.
  • Özyazıcı, M.A., & Açıkbaş, S. (2019a). Koca Fiğ (Vicia narbonensis L.) Bitkisinde Fosforlu Gübre Dozlarının Ot ve Tohum Verimine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (17), 1031-1036.
  • Özyazıcı, M. A., & Açıkbaş, S. (2019b). Yaygın Mürdümük (Lathyrus sativus L.) Genotiplerinin Yarı Kurak İklim Koşullarında Bazı Tarımsal Özellikleri ile Verim Performanslarının Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 1058-1068.
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
  • Steel, R.G.D., Torrie, J.H., & Dickey, D.A. (1997). Principles and procedures of statistics: a biometrical approach. New York: McGraw-Hill; 1997.
  • Talukdar, D., & Biswas, A. K. (2008). Variability, heritability and scope of selection for some quantitative traits in induced mutant lines of grass pea (Lathyrus sativus L.). International Journal of Plant Sciences, 3(2), 528-530.
  • Talukdar, D. (2011a). Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Research, 34(4), 232-241.
  • Talukdar, D. (2011b). Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. International Journal of Current Research, 2(1), 46-54.
  • Tsegay, B. A., & Gebreslassie, B. (2014). The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. African Journal of Plant Science, 8(5), 225-231.
  • Yavaş, İ., & İlker, E. (2020). Çevresel Stres Koşullarına Maruz Kalan Bitkilerde Fotosentez ve Fitohormon Seviyelerindeki Değişiklikler. Bahri Dağdaş Bitkisel Araştırma Dergisi, 9(2), 295-311.
  • Zhu, J., Kaeppler, S. M., & Lynch, J. P. (2005). Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics, 111(4), 688-695.

Yaygın Mürdümük (Lathyrus sativus L.) Bitkisinde Tuz Stresinin Kök Gelişimi ve Mimarisine Etkisi

Year 2021, Issue: 23, 793 - 799, 30.04.2021
https://doi.org/10.31590/ejosat.871122

Abstract

Bitki kök gelişimi ve mimarisi iklim değişimi ve artan kuraklık baskısı nedeniyle artan bir ilgi ve önem dönemi yaşamaktadır. Kök gelişiminin aynı toprak üstü organların gelişiminde olduğu gibi, 3 boyutlu ve kompleks bir gelişim sistemi olduğu bilinmektedir. Baklagil yem bitkisi türlerinde kök mimarisi ve gelişimini etkileyen abiyotik stress elementlerinin belirlenmesi, abiyotik strese tolerant çeşit geliştirilmesi ve sürdürülebilir tarımsal üretim açısından elzemdir. Bu çalışmada temel gelişimsel farklılıkları bilinen iki farklı mürdümük (Lathyrus sativus L.) çesidinde 0-300 mM arası tuz (NaCl) uygulamasının erken dönem kök gelişimi ve kök mimarisine etkisi ve endosperm kullanım oranının incelenmesi amaçlanmıştır. Modifiye cigar- roll tekniği ile yapılan çalışma sonucunda, genel olarak 100-150 mM ve üstü dozlarının kök gelişimini inhibe ettiği, kök sayı ve uzunluklarının birbirine paralel düzeyde etkilendiği görülmüştür. Kök gelişimi ile ilgili ölçülen parametreler açısından çeşitler arası genotipik farklılıkların, sonuçlara da yansıdığı görülmüştür. Farklı çeşitlerin, farklı düzeylerde toleranslarının olduğu, toplam kök sayısı ve uzunluğunun tuz stresinin etkisini belirgin bir şekilde yansıttığı anlaşılmıştır. Erken dönemde karşılaşılan stress sonucunda tohum endosperm kullanım oranının 4 kata kadar düştüğü görülmüştür. Fide aşamasında tuz stresi toleransı gözleminin çimlenme ve gelişme hızı açısından genotipik farklılıklara ışık tutabileceği ve erkencilik açısından önemli olduğu gözlemlenmiştir.

References

  • Ahmad, P., Azooz, M. M., & Prasad, M. N. V. (2013). Salt stress in plants. Heidelberg: Springer.
  • Ahmadi, J., Vaezi, B., & Pour-Aboughadareh, A. (2015). Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biologist, 9(1), 29-34.
  • Akdağoğlu, M., Bayhan, Y.,& Baran, M.F. (2020). II. Ürün Ayçiçeği Üretiminde Farklı Toprak İşleme Yöntemlerinin Teknik Olarak Değerlendirilmesi. European Journal of Science and Technology, (20), 334-342.
  • Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231(2), 243-254.
  • Ariel, F. D., Diet, A., Crespi, M., & Chan, R. L. (2010). The LOB-like transcription factor MtLBD1 controls Medicago truncatula root architecture under salt stress. Plant signaling & behavior, 5(12), 1666-1668.
  • Bektaş, H., & Waines, J.G. (2020). Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). Türkiye Tarımsal Araştırmalar Dergisi, 7(1), 78-84.
  • Bektas, H. (2015). Determination of Root Traits in Wild, Landrace and Modern Wheats and Dissection of Quantitative Trait Loci (QTL) for Root Characters in Bread Wheat (Doctoral dissertation, UC Riverside).
  • Burridge, J., Jochua, C. N., Bucksch, A., & Lynch, J. P. (2016). Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Research, 192, 21-32.
  • Colombi, T., Kirchgessner, N., Le Marié, C. A., York, L. M., Lynch, J. P., & Hund, A. (2015). Next generation shovelomics: set up a tent and REST. Plant and Soil, 388(1), 1-20.
  • Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887.
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer, New York, NY.
  • Koca, H., Bor, M., Özdemir, F., & Türkan, İ. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60(3), 344-351.
  • Kwon, O. K., Mekapogu, M., & Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60(6), 831-839.
  • Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2), 347-357.
  • McMaster, G. S., & Wilhelm, W. (2003). Phenological responses of wheat and barley to water and temperature: improving simulation models. Journal of Agricultural Science, 141, 129-147.
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 153(1), 88-97.
  • Noto, F., Poma, I., Gristina, L., Venezia, G., & Ferrotti, F. (2001, July). Bioagronomic and qualitative characteristics in Lathyrus sativus lines. In Proceedings 4th European Conference on Grain Legumes (eds. AEP) (pp. 8-12). Cracow, Poland.
  • Önal Aşçı, Ö., & Zambi, H. Farklı NaCl konsantrasyonlarının bazı bezelye çeşit ve genotiplerinde bitki gelişimine etkisi. Anadolu Tarım Bilimleri Dergisi, 35(3), 274-284.
  • Özkorkmaz, F., & Yılmaz, N. (2017). Farklı tuz konsantrasyonlarının fasulye (Phaseolus vulgaris L.) ve börülcede (Vigna unguiculata L.) çimlenme üzerine etkilerinin belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 196-200.
  • Özyazıcı, M.A., & Açıkbaş, S. (2019a). Koca Fiğ (Vicia narbonensis L.) Bitkisinde Fosforlu Gübre Dozlarının Ot ve Tohum Verimine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (17), 1031-1036.
  • Özyazıcı, M. A., & Açıkbaş, S. (2019b). Yaygın Mürdümük (Lathyrus sativus L.) Genotiplerinin Yarı Kurak İklim Koşullarında Bazı Tarımsal Özellikleri ile Verim Performanslarının Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 1058-1068.
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
  • Steel, R.G.D., Torrie, J.H., & Dickey, D.A. (1997). Principles and procedures of statistics: a biometrical approach. New York: McGraw-Hill; 1997.
  • Talukdar, D., & Biswas, A. K. (2008). Variability, heritability and scope of selection for some quantitative traits in induced mutant lines of grass pea (Lathyrus sativus L.). International Journal of Plant Sciences, 3(2), 528-530.
  • Talukdar, D. (2011a). Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Research, 34(4), 232-241.
  • Talukdar, D. (2011b). Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. International Journal of Current Research, 2(1), 46-54.
  • Tsegay, B. A., & Gebreslassie, B. (2014). The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. African Journal of Plant Science, 8(5), 225-231.
  • Yavaş, İ., & İlker, E. (2020). Çevresel Stres Koşullarına Maruz Kalan Bitkilerde Fotosentez ve Fitohormon Seviyelerindeki Değişiklikler. Bahri Dağdaş Bitkisel Araştırma Dergisi, 9(2), 295-311.
  • Zhu, J., Kaeppler, S. M., & Lynch, J. P. (2005). Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics, 111(4), 688-695.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Harun Bektaş 0000-0002-4397-4089

Publication Date April 30, 2021
Published in Issue Year 2021 Issue: 23

Cite

APA Bektaş, H. (2021). The Effect of Salt Stress on Root Development and Architecture in Common Grasspea (Lathyrus sativus L.). Avrupa Bilim Ve Teknoloji Dergisi(23), 793-799. https://doi.org/10.31590/ejosat.871122