Research Article
BibTex RIS Cite

The numerical investigation of the effect of annular flow channel geometry on thermal performance in heat transfer cylinders

Year 2021, Issue: 23, 552 - 562, 30.04.2021
https://doi.org/10.31590/ejosat.884809

Abstract

In this study, heat transfer behavior in a rotating annular flow field is investigated via computational fluid dynamics. The annular flow field subject to the study is the heat transfer cylinders (rolls) widely used in different fields of industry. The heating or cooling function in heat transfer rollers is provided by the work fluid moving in the flow area in the annular section under the roller surface. The behavior of the working fluid conditioned by the channel geometry is directly related to the thermal performance of the heat transfer roller. The purpose of this study is to investigate the effect of the geometric structure of the channels through which the work fluid moves on the heat transfer behavior. For this purpose, the types of work fluid working channels included in the heat transfer rollers, which are frequently used in industrial applications, were examined and models of different types were determined and modeled numerically. In the study, the roller rotation speed was kept constant and three different fluid flow rates were examined. The results of the study were examined in terms of total heat transfer, roller surface temperature distribution, the amount of heat absorbed from the produced material and the hydraulic pressure drop of the fluid. As a result of the study, it was seen that the channel geometries that hydrodynamically condition the working fluid have a significant effect on the heat transfer behavior. The thermal performances of roller models with different fluid channel structures under varying operating conditions have been comparatively examined and it has been observed that the model with decreasing spiral channels can benefit from a uniform surface temperature.

References

  • Boache P. J., Perspective: A method for uniform reporting of grid refinement studies, J. Fluids Eng. Trans. ASME, c. 116, sayı 3, ss. 405–413, 1994.
  • Celik I. B., Ghia U., Roache P. J., Freitas C. J., Coleman H. ve Raad P. E., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. Trans. ASME, c. 130, sayı 7, ss. 0780011–0780014, 2008.
  • Cotrell D. L., Flow between a cylinder and a rotating coaxial cylinder, axisymmetric shaft with axially-periodic radius variation, or screw, University of Illinois at Urbana-Champaign, 2003.
  • Devisme S., Haudin J. M., Agassant J. F., Rauline D. ve Chopinez F., Numerical simulation of extrusion coating, Int. Polym. Process., c. 22, sayı 1, ss. 90–104, 2007.
  • Fénot M., Bertin Y., Dorignac E. ve Lalizel G., A review of heat transfer between concentric rotating cylinders with or without axial flow, Int. J. Therm. Sci., c. 50, sayı 7, ss. 1138–1155, 2011.
  • Fénot M., Dorignac E., Giret A. ve Lalizel G., Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Appl. Therm. Eng., c. 54, sayı 1, ss. 345–358, 2013.
  • Funk W. H., Rotating double shell heat exchange drum means and method of operating same, 1957.
  • Huang S. ve Chun C. H., A numerical study of turbulent flow and conjugate heat transfer in concentric annuli with moving inner rod, Int. J. Heat Mass Transf., c. 46, sayı 19, ss. 3707–3716, 2003.
  • Jeng T. M., Tzeng S. C. ve Lin C. H., Heat transfer enhancement of Taylor-Couette-Poiseuille flow in an annulus by mounting longitudinal ribs on the rotating inner cylinder, Int. J. Heat Mass Transf., c. 50, sayı 1–2, ss. 381–390, 2007.
  • Jones D. P., McCann M. J., Abbott SJ, Web tension variations caused by temperature changes and slip on rollers, Proc. Elev. Int. Conf. Web Handl., ss. 65–84, 2011.
  • Kumpinsky E., Heat-Transfer Model Assessment of Chill Rolls for Polymer Film Extrusion, Ind. Eng. Chem. Res., c. 32, sayı 11, ss. 2866–2872, 1993.
  • Lamberti G. ve Titomanlio G., Analysis of film casting process: The heat transfer phenomena, Chem. Eng. Process. Process Intensif., c. 44, sayı 10, ss. 1117–1122, 2005.
  • Liu H., Chen W., Qiu S. ve Liu G., Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting process, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., c. 40, sayı 3, ss. 411–429, 2009.
  • Lockhar F. N., Heat transfer roll, 1967.
  • Lu Y. ve Pagilla P. R., Adaptive control of web tension in a heat transfer section of a roll-to-roll manufacturing process line, Proc. Am. Control Conf., ss. 1799–1804, 2014.
  • Lu Y., Pagilla P. R., Modeling Of Temperature Distribution In A Moving Web Transported Over A Heat Transfer Roller, içinde ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, 2012
  • Malewski T., Heating roller assembly for laminating, embossing and printing machines, 1958.
  • Nouri-Borujerdi A. ve Nakhchi M. E., Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: Review and experiments, Appl. Therm. Eng., c. 120, ss. 257–268, 2017.
  • Pato T. G., Heat trasnfer roller having fluid circulating means therein, 1968.
  • Poncet S., Haddadi S. ve Viazzo S., Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system, Int. J. Heat Fluid Flow, c. 32, sayı 1, ss. 128–144, 2011.
  • Rahaim C. P., Oberkampf W. L., Cosner R. R. ve Dominik D. F., AIAA committee on standards for computational fluid dynamics - Status and plans, 41st Aerosp. Sci. Meet. Exhib., ss. 1–22, 2003.
  • Ramundo B. T., Heat exchange rolls, 1960.
  • Roache P. J., Verification of codes and calculations, AIAA J., c. 36, sayı 5, ss. 696-702, 1998.
  • Shih T.H., Liou W. W., Shabbir A., Yang Z. ve Zhu J., A New Kt Eddy Viscosity Model For High :Reynolds Number Turbulent Flows, Comput. Fluids, c. 24, sayı 3, ss. 227–238, 1995.
  • SiemensPLM, STAR-CCM+ User guide, Version 14.02.010. 2019.
  • Sven Barthel G. E., Oil-heated roller, 1984.
  • Theysohn H., Calender heating roll, 1977.
  • Wedel G. L., Heat transfer roll and method, 1984.
  • Wilcox, D. C., Turbulence Modeling for CFD, D C W Industries; 2nd Edition, 1998.

Isı Transfer Silindirlerinde Halka Akış Kanalı Geometrisinin Isıl Performansa Etkisinin Sayısal Olarak İncelenmesi

Year 2021, Issue: 23, 552 - 562, 30.04.2021
https://doi.org/10.31590/ejosat.884809

Abstract

Bu çalışmada bir döner halka akım alanındaki ısı transferi davranışı hesaplamalı akışkanlar dinamiği yardımıyla incelenmiştir. Çalışmaya konu olan halka akım alanı, endüstrinin farklı alanlarında yaygın olarak kullanılan ısı transfer silindirleri(merdane)’dir. Isı transfer merdanelerinde ısıtma ya da soğutma görevi, merdane yüzeyi altındaki halka kesitteki akım alanında hareket eden iş akışkanı ile sağlanır. Kanal geometrisi tarafından şartlandırılan iş akışkanının davranışı, ısı transfer merdanesinin ısıl performansı ile doğrudan ilişkilidir. Bu çalışmanın amacı, iş akışkanının hareket ettiği kanalların geometrik yapısının ısı transfer davranışına etkisinin araştırılmasıdır. Bu amaçla, endüstriyel uygulamalarda sıklıkla kullanılan ısı transfer merdanelerinin içerdiği iş akışkanı çalışma kanalı tipleri incelenmiş ve farklı tiplerde modeller belirlenerek sayısal olarak modellenmiştir. Çalışmada merdane dönüş hızı sabit tutulmuş ve üç farklı akışkan debisi incelenmiştir. Çalışma sonuçları toplam ısı transferi, roller yüzeyi sıcaklık dağılımı, üretilen malzemeden çekilen ısı miktarı ve akışkanın hidrolik basınç düşüşü yönünden incelenmiştir. Çalışma sonucunda, iş akışkanını hidrodinamik olarak şartlandıran kanal geometrilerinin ısı transfer davranışı üzerinde önemli etkisi olduğu görülmüştür. Farklı akışkan kanalı yapılarına sahip merdane modellerinin değişen çalışma şartlarındaki ısıl performansları karşılaştırmalı olarak irdelenmiş ve azalan spiralli kanallar içeren modelin uniform bir yüzey sıcaklığı eldesi yönünden fayda sağladığı görülmüştür.

References

  • Boache P. J., Perspective: A method for uniform reporting of grid refinement studies, J. Fluids Eng. Trans. ASME, c. 116, sayı 3, ss. 405–413, 1994.
  • Celik I. B., Ghia U., Roache P. J., Freitas C. J., Coleman H. ve Raad P. E., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. Trans. ASME, c. 130, sayı 7, ss. 0780011–0780014, 2008.
  • Cotrell D. L., Flow between a cylinder and a rotating coaxial cylinder, axisymmetric shaft with axially-periodic radius variation, or screw, University of Illinois at Urbana-Champaign, 2003.
  • Devisme S., Haudin J. M., Agassant J. F., Rauline D. ve Chopinez F., Numerical simulation of extrusion coating, Int. Polym. Process., c. 22, sayı 1, ss. 90–104, 2007.
  • Fénot M., Bertin Y., Dorignac E. ve Lalizel G., A review of heat transfer between concentric rotating cylinders with or without axial flow, Int. J. Therm. Sci., c. 50, sayı 7, ss. 1138–1155, 2011.
  • Fénot M., Dorignac E., Giret A. ve Lalizel G., Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Appl. Therm. Eng., c. 54, sayı 1, ss. 345–358, 2013.
  • Funk W. H., Rotating double shell heat exchange drum means and method of operating same, 1957.
  • Huang S. ve Chun C. H., A numerical study of turbulent flow and conjugate heat transfer in concentric annuli with moving inner rod, Int. J. Heat Mass Transf., c. 46, sayı 19, ss. 3707–3716, 2003.
  • Jeng T. M., Tzeng S. C. ve Lin C. H., Heat transfer enhancement of Taylor-Couette-Poiseuille flow in an annulus by mounting longitudinal ribs on the rotating inner cylinder, Int. J. Heat Mass Transf., c. 50, sayı 1–2, ss. 381–390, 2007.
  • Jones D. P., McCann M. J., Abbott SJ, Web tension variations caused by temperature changes and slip on rollers, Proc. Elev. Int. Conf. Web Handl., ss. 65–84, 2011.
  • Kumpinsky E., Heat-Transfer Model Assessment of Chill Rolls for Polymer Film Extrusion, Ind. Eng. Chem. Res., c. 32, sayı 11, ss. 2866–2872, 1993.
  • Lamberti G. ve Titomanlio G., Analysis of film casting process: The heat transfer phenomena, Chem. Eng. Process. Process Intensif., c. 44, sayı 10, ss. 1117–1122, 2005.
  • Liu H., Chen W., Qiu S. ve Liu G., Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting process, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., c. 40, sayı 3, ss. 411–429, 2009.
  • Lockhar F. N., Heat transfer roll, 1967.
  • Lu Y. ve Pagilla P. R., Adaptive control of web tension in a heat transfer section of a roll-to-roll manufacturing process line, Proc. Am. Control Conf., ss. 1799–1804, 2014.
  • Lu Y., Pagilla P. R., Modeling Of Temperature Distribution In A Moving Web Transported Over A Heat Transfer Roller, içinde ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, 2012
  • Malewski T., Heating roller assembly for laminating, embossing and printing machines, 1958.
  • Nouri-Borujerdi A. ve Nakhchi M. E., Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: Review and experiments, Appl. Therm. Eng., c. 120, ss. 257–268, 2017.
  • Pato T. G., Heat trasnfer roller having fluid circulating means therein, 1968.
  • Poncet S., Haddadi S. ve Viazzo S., Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system, Int. J. Heat Fluid Flow, c. 32, sayı 1, ss. 128–144, 2011.
  • Rahaim C. P., Oberkampf W. L., Cosner R. R. ve Dominik D. F., AIAA committee on standards for computational fluid dynamics - Status and plans, 41st Aerosp. Sci. Meet. Exhib., ss. 1–22, 2003.
  • Ramundo B. T., Heat exchange rolls, 1960.
  • Roache P. J., Verification of codes and calculations, AIAA J., c. 36, sayı 5, ss. 696-702, 1998.
  • Shih T.H., Liou W. W., Shabbir A., Yang Z. ve Zhu J., A New Kt Eddy Viscosity Model For High :Reynolds Number Turbulent Flows, Comput. Fluids, c. 24, sayı 3, ss. 227–238, 1995.
  • SiemensPLM, STAR-CCM+ User guide, Version 14.02.010. 2019.
  • Sven Barthel G. E., Oil-heated roller, 1984.
  • Theysohn H., Calender heating roll, 1977.
  • Wedel G. L., Heat transfer roll and method, 1984.
  • Wilcox, D. C., Turbulence Modeling for CFD, D C W Industries; 2nd Edition, 1998.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Yurtseven 0000-0003-2561-1783

Publication Date April 30, 2021
Published in Issue Year 2021 Issue: 23

Cite

APA Yurtseven, A. (2021). Isı Transfer Silindirlerinde Halka Akış Kanalı Geometrisinin Isıl Performansa Etkisinin Sayısal Olarak İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(23), 552-562. https://doi.org/10.31590/ejosat.884809