Year 2021, Volume , Issue 23, Pages 717 - 724 2021-04-30

Determining the Energy Use Efficiency and Greenhouse Gas Emissions (GHG) in Olive Farming
Zeytin Yetiştiriciliğinde Enerji Kullanım Etkinliğinin ve Sera Gazı (GHG) Emisyonunun Belirlenmesi

Osman GÖKDOĞAN [1] , Oktay ERDOĞAN [2]


In this research, energy use efficiency and GHG ratio computations were determined in olive farming. It was practiced in Çakallık area of Karpuzlu district of Aydın province of Turkey. Experiments and research data computations are based on the January 2020 - January 2021 growing season. Energy input (EI) and energy output (EO) in olive farming were computed as 2580.70 MJ ha-1 and 9904.04 MJ ha-1. In olive farming, 46.96% of all energy inputs consists of nitrogen energy (1212 MJ ha-1), 25.49% consists of human labour energy (657.88 MJ ha-1), 8.60% consists of phosphorus energy (222 MJ ha-1), 8.04% consists of electricity energy (207.36 MJ ha-1), 5.19% consists of potassium energy (134 MJ ha-1), 5.14% consists of transportation energy (132.53 MJ ha-1) and 0.58% consists of sulphur energy (14.93 MJ ha-1). Energy use efficiency (EUE), specific energy (SE), energy productivity (EP) and net energy (NE) in olive farming were computed as 3.84, 0.88 MJ kg-1, 1.14 kg MJ-1 and 7323.34 MJ ha-1, respectively. Energy inputs in olive farming could be classified as 33.53% direct, 66.47% indirect, 25.49% renewable and 74.51% non-renewable. Total GHG emissions were computed as 406.73 kgCO2-eqha-1 for olive farming, with the greatest input being use of human labour (57.77%). Human labour input is followed by nitrogen (22.47%), electricity (8.51%), phosphorus (5.80%), potassium (3.15%), sulphur (1.21%) and transportation inputs (1.09%), respectively. GHG ratio value was computed as 0.14 kgCO2-eqkg-1 in olive farming.
Bu araştırmada zeytin yetiştiriciliğinde enerji kullanım etkinliliği ve sera gazı oranı belirlenmiştir. Araştırma, Türkiye’nin Aydın ili Karpuzlu ilçesine bağlı Çakallık mevkiinde yapılmıştır. Denemeler ve araştırma verileri hesaplamaları, Ocak 2020 - Ocak 2021 yetiştirme sezonuna dayanmaktadır. Zeytin yetiştiriciliğinde enerji girdisi ve çıktısı sırasıyla 2580.70 MJ ha-1, 9904.04 MJ ha-1 hesaplanmıştır. Zeytin yetiştiriciliğinde tüm enerji girdilerinin %46.96'sı azot enerjisinden (1212 MJ ha-1), %25.49'u insan işgücü enerjisinden (657.88 MJ ha-1), %8.60'ı fosfor enerjisinden (222 MJ ha-1), %8.04'ü elektrik enerjisinden (207.36 MJ ha-1), %5.19'u potasyum enerjisinden (134 MJ ha-1),%5.14'ü taşıma enerjisinden (132.53 MJ ha-1) ve % 0.58'i kükürt enerjisinden (14.93 MJ ha-1) oluşmaktadır. Zeytin yetiştiriciliğinde enerji kullanım etkinliği, spesifik enerji, enerji verimliliği ve net enerji sırasıyla 3.84, 0.88 MJ kg-1, 1.14 kg MJ-1 ve 7323.34 MJ ha-1 hesaplanmıştır. Zeytin yetiştiriciliğinde enerji girdisinin %33.53’ü doğrudan, %66.47’si dolaylı, %25.49’u yenilenebilir ve %74.51’i yenilenemez olarak sınıflandırılabilir. Zeytin yetiştiriciliği için toplam sera gazı emisyonları 406,73 kgCO2-eşha-1 olarak hesaplanmıştır ve en büyük girdi insan işgücü kullanımıdır (%57.77). İnsan işgücü girdisini sırasıyla azot (% 22.47), elektrik (%8.51), fosfor (%5.80), potasyum (%3.15), kükürt (%1.21) ve taşıma girdileri (% 1.09) takip etmektedir. Ayrıca zeytin yetiştiriciliğinde sera gazı oranı değeri 0.14 kgCO2-eşha-1 olarak hesaplanmıştır.
  • Akcaoz, H., Ozcatalbas, O., Kizilay, H. (2009). Analysis of energy use for pomegranate production in Turkey. Journal of Food, Agriculture & Environment, 7(2): 475-480.
  • Akdemir, S., Calavaris, C., Gemtos, T. (2017). Energy balance of sunflower production. Agronomy Research, 15(4): 1463-1473.
  • Anonymous. (2018). Türkiye Cumhuriyeti, Tarım ve Orman Bakanlığı, Aydın İl Müdürlüğü. Aydın Tarım Master Planı (Revizyon). (Erbaş, F. (Ed.)), (In Turkish).
  • Anonymous. (2020). Türkiye Cumhuriyeti, Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. Tarım Ürünleri Piyasaları, Zeytinyağı, Ocak, 2020, Ürün No: BÜ-22 (In Turkish).
  • Arın, S., Akdemir, B. (1987). Tekirdağ’da soğan üretimi mekanizasyonunun enerji bilançosu yaklaşımı ile incelenmesi. 3. Uluslararası Tarımsal Mekanizasyon ve Enerji Sempozyumu. İzmir, Türkiye, 195-201 (In Turkish).
  • Astier, M., Yair Merlín-Uribe, Y., Villamil-Echeverri, L., Garciarreal, A., Gavito, M.E., Masera, O.R. (2014). Energy balance and greenhouse gas emissions in organic and conventional avocado orchards in Mexico. Ecological Indicators, 43: 281-287.
  • Atılgan, A., Köknaroğlu, H. (2006). Cultural energy analysis on broilers reared in different capaticty poultry houses. Italian Journal of Animal Science, 5: 393-400.
  • Aydın, B., Aktürk, D. (2018). Energy use efficiency and economic analysis of peach and cherry production regarding good agricultural practices in Turkey: A case study in Çanakkale province. Energy, 158: 967-974.
  • Baran M.F, Karaağaç, H.A, Bolat, A, Çil, A., Çil, A.N. (2018). Yerfıstığı üretiminde enerji kullanım etkinliğinin belirlenmesi (Adana ili örneği). Avrupa Bilim ve Teknoloji Dergisi, 15: 103-111 (In Turkish).
  • Barut, Z.B., Ertekin, C., Karaağaç, H.A. (2011). Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey. Energy, 36: 5466-5475.
  • Bayhan, Y. (2016). İkinci ürün ayçiçeği üretiminde farklı toprak işleme ve doğrudan ekim yöntemlerinin enerji kullanım etkinliğinin karşılaştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 13(2): 102-109 (In Turkish).
  • BioGrace-II. (2015). Harmonised calculations of biofuel greenhouse gas emissions in Europe. BioGrace, Utrecht, The Netherlands. (http://www.biograce.net).
  • Canakci, M. (2010). Energy use pattern and economic analyses of pomegranate cultivation in Turkey. African Journal of Agricultural Research, 5(7): 491-499.
  • Cappelletti, G.M., Ioppolo, G., Nicoletti, G.M., Russo, C. (2014). Energy requirement of extra virgin olive oil production. Sustainability, 6: 4966-4974.
  • Cleveland, C. (2014a). Ten fundamental principles of net energy. Available online: http://www.eoearth.org/view/article/156473 (Accessed on 15 May 2014).
  • Cleveland, C. (2014b). Net energy analysis. Available online: http://www.eoearth.org/view/article/154821 (Accessed on 15 May 2014).
  • Criminna, R., Meneguzzo, F., Fidalgo, A., Ilharco, L.M. (2016). Extraction, benefits and valorization of olive polyphenols. European Journal of Lipid Science and Technology, 118: 503-511.
  • Çelik, Y., Peker, K., Oğuz, C. (2010). Comparative analysis of energy efficiency in organic and conventional farming systems: A case study of black carrot (Daucus carota L.) production in Turkey. Philippine Agricultural Scientist, 93(2): 224-231.
  • Çiçek, A., Altıntaş, G., Erdal, G. (2011). Energy consumption patterns and economic analysis of irrigated wheat and rainfed wheat production: Case study for Tokat region, Turkey. Bulgarian Journal of Agricultural Science, 17(3): 378-388.
  • Demircan, V., Ekinci, K., Keener, H. M., Akbolat, D., Ekinci, Ç. (2006). Energy and economic analysis of sweet cherry production in Turkey: A case study from Isparta province. Energy Conversion and Management, 47: 1761-1769.
  • Demircan, V., Koknaroglu, H. (2007). Effect of farm size on sustainability of beef cattle production. Journal of Sustainable Agriculture, 31(1):75-87.
  • Eren, Ö., Gökdoğan, O., Baran, M.F. (2019). Determination of greenhouse gas emissions (GHG) in the production of different plants in Turkey. Fresenius Environmental Bulletin, 28(2A): 1158-1166.
  • Ertekin, C., Çanakcı, M., Külcü, R., Yaldız, O. (2010). Energy use in legume cultivation in Turkey. XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR). Québec, Canada, June, 13-17, 1-9.
  • Fluck, R.C., Baird, C.D. (1982). Agricultural Energetics. Connecticut: AVI.
  • Gökdoğan, O., Erdoğan, O. (2018). Evaluation of energy balance in organic olive (Olea europaea L.) production in Turkey. Erwerbs-Obstbau, 60(1): 47-52.
  • Göktolga, Z.G., Gözener, B., Karkacıer, O. (2006). Energy use in peach production: case of Tokat province. Gaziosman Paşa University, Journal of Agriculture Faculty, 23(2): 39-44 (In Turkish).
  • Guzman, G.I., Alonso, A.M. (2008). A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 98: 167-176.
  • Gündoğmuş, E. (2014). Does energy efficiency increase with orchard size? A case study from peach production. Energy Efficiency, 7: 833-839.
  • Güzel, E. (1986). Çukurova Bölgesinde yerfıstığının söküm ve harmanlanmasının mekanizasyonu ve bitkinin mekanizasyona yönelik özelliklerinin saptanması üzerinde bir araştırma. Türkiye Zirai Donatım Kurumu Mesleki Yayınları. Yayın No: 47, Ankara (In Turkish).
  • Hacıseferoğulları, H., Acaroğlu, M., Gezer, I. (2003). Determination of the energy balance of the sugar beet plant. Energy Sources, 25: 15-22.
  • Hemmati, A., Tabatabaeefar, A., Mousavi-avval, S.H., Poozesh, M. (2013). Energy flow modeling and economic analysis of olive production based on different orchard size in Guilan province of Iran. International Journal of Agriculture and Crop Sciences, 5(15): 1612-1621.
  • Herendeen, R.A. (2004). Net Energy Analysis: Concepts and Methods. In Encyclopedia of Energy, 4: 283-289.
  • Houshyar, E., Dalgaard, T., Tarazgar, M.H., Jorgensen, U. (2015). Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 89: 99-109.
  • Hughes, D.J., West, J.S., Atkins, S.D., Gladders, P., Jeger, M.J., Fitt, B.D. (2011). Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production. Pest Management Sciences, 67: 1082-1092.
  • Karaağaç, M. A., Aykanat, S., Cakır, B., Eren, Ö., Turgut, M.M., Barut, Z.B., Öztürk, H.H. (2011). Energy balance of wheat and maize crops production in Hacıali Undertaking. 11th International Congress on Mechanization and Energy in Agriculture Congress, 388-391.
  • Karaağaç, H.A., Baran, M.F., Mart, D., Bolat, A., Eren, Ö. (2019). Nohut üretiminde enerji kullanım etkinliği ve sera gazı (GHG) emisyonunun belirlenmesi (Adana ili örneği). Avrupa Bilim ve Teknoloji Dergisi, 16: 41-50 (In Turkish).
  • Kazemi, H., Shahbyki, M., Baghbani, S. (2015). Energy analysis for faba bean production: A case study in Golestan province, Iran. Sustainable Production and Consumption, 3: 15-20.
  • Khoshnevisan, B., Shariati, H.M., Rafiee, S., Mousazadeh, H. (2014). Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29: 316-324.
  • Kizilaslan, H. (2009). Input-output energy analysis of cherries production in Tokat province of Turkey. Applied Energy, 86: 1354-1358.
  • Kitani, O. (1999). Energy for biological systems. In: The International Commission of Agricultural Engineering (ed) CIGR Handbook of Agricultural Engineering: Energy and Biomass Engineering, vol V (Ortiz-Ca˜navate, J. and Hernanz, J.L.) American Society of Agricultural Engineers, 13-39.
  • Koçtürk, O.M., Engindeniz, S. (2009). Energy and cost analysis of sultana grape growing: A case study of Manisa, west Turkey. African J Agricultural Research, 4(10): 938-943.
  • Konak, M., Marakoğlu, T., Özbek, O. (2004). Mısır üretiminde enerji bilançosu. Selçuk Üniversitesi Ziraat Fakültesi Dergisi, 18(34): 28-30 (In Turkish).
  • Mandal, K.G., Saha, K.P., Ghosh, P.K., Hati, K.M., Bandyopadhyay, K.K. (2002). Bioenergy and economic analysis of soybean based crop production systems in Central India. Biomass and Bioenergy, 23: 337-345.
  • Mani, I., Kumar, P., Panwar J.S., Kant, K. (2007). Variation in energy consumption in production of wheat-maize with varying altitudes in Hill Regions of Himachal Prades, India. Energy, 32: 2336-2339.
  • Maraseni, T.N., Cockfield, G., Maroulis, J., Chen, G. (2010). An assesment of greenhouse gas emissions from the Australian vegetables industry. Journal of Environmental Science and Health Part B, 45(6): 578-588.
  • Meisterling, K., Samaras, C., Schweizer, V. (2009). Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production, 17: 222-230.
  • Mohammadi, A., Tabatabaeefar, A., Shahin, S., Rafiee, S., Keyhani, A. (2008). Energy use and economical analysis of potato production in Iran a case study: Ardabil Province. Energy Conversion and Management, 49: 3566-3570.
  • Mohammadi, A., Rafiee, S., Mohtasebi, S.S., Rafiee, H. (2010). Energy inputs-yield relationship and cost analysis of kiwifruit production in Iran. Renewable Energy, 35: 1071-1075.
  • Mohammadi-Barsari, A., Firouzi, S., Aminpanah, H. (2016). Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Information Processing in Agriculture, 3: 69-75.
  • Nabavi-Pelesaraei, A., Rafiee, S., Hosseinzadeh-Bandbafha, H., Shamshirband, S. (2016). Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production, 133(1): 924-931.
  • Nagy, C.N. (1999). Energy coefficients for agriculture inputs in western Canada. http://www.csale.usask.ca/PDFDocuments/energyCoefficientsAg.pdf; May 31, 1999.
  • Nguyen, T.L.T., Hermansen, J.E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy, 89: 254-261.
  • Ozalp, A., Yılmaz, S., Ertekin, C., Yılmaz, İ. (2018). Energy analysis and emissions of greenhouse gases of pomegranate production in Antalya province of Turkey. Erwerbs-Obstbau, 60: 321-329.
  • Ozbek, O., Gokdogan, O., Baran, M.F. (2021). Investigation on energy use efficiency and greenhouse gas emissions (GHG) of onion cultivation. Fresenius Environmental Bulletin, 30(2): 1125-1133.
  • Ozkan, B., Akcaoz, H., Karadeniz, F. (2004a). Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management, 45: 1821-1830.
  • Ozkan, B., Kürklü, A., Akçaöz, H. (2004b) An input-output energy analysis in greenhouse vegetable production: A case study for Antalya region of Turkey. Biomass and Bioenergy, 26: 89-95.
  • Ozkan, B., Akçaöz, H., Fert, C. (2004c). Energy input-output analysis in Turkish agriculture. Renewable Energy, 29: 39-51.
  • Özcan, M.T. (1986). Mercimek hasat ve harman yöntemlerinin iş verimi, kalitesi, enerji tüketimi ve maliyet yönünden karşılaştırılması ve uygun bir hasat makinası geliştirilmesi üzerinde araştırmalar. Türkiye Zirai Donatım Kurumu Yayınları. Yayın No: 46, Ankara (In Turkish).
  • Öztürk, H.H., Ekinci, K., Barut, Z.B. (2008). Energy analysis of the tillage systems in second crop corn production. Journal of Sustainable Agriculture, 28(3): 25-37.
  • Qasemi-Kordkheili, P., Rahbar, A. (2015). Modeling and optimization of energy consumption for grapefruit production in Iran. Agricultural Engineering International: CIGR Journal, 17(1): 118-129.
  • Rodis, P.S., Karathanos, V.T., Mantzavinou, A. (2012). Partitioning of olive oil antioxidants between oil and waterphases. Journal of Agricultural and Food Chemistry, 50: 596-601.
  • Saltuk, B. (2019). Determination of energy efficiency in after groundnut production Osmaniye case. Fresenius Environmental Bulletin, 28(4A): 3476-3482.
  • Saltuk, B., Yücel, A., Atılgan, A. (2020). Determination of some environmental energy requirements in broiler poultry housing. Fresenius Environmental Bulletin, 29(3): 1695-1702.
  • Singh, J.M. (2002). On farm energy use pattern in different cropping systems in Haryana, India. International Institute of Management University of Flensburg, Sustainable Energy Systems and Management. Master of Science, Germany.
  • Singh, H., Mishra, D., Nahar, N.M., Ranjan, M. (2003). Energy use pattern in production agriculture of a typical village in Arid Zone India (Part II). Energy Conversion Management, 44: 1053-1067.
  • Sonmete, M.H. (2006). Fasulyenin hasat-harman mekanizasyonu ve geliştirme olanakları. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü. Doktora Tezi, Konya (In Turkish).
  • Sonmete, M.H., Demir, F. (2007). Fasulyenin hasat-harman mekanizasyonunda enerji tüketimleri. Selçuk Üniversitesi, Ziraat Fakültesi Dergisi, 21(41): 109-117 (In Turkish).
  • Tan, F. (2018). Determination of the biogas potential from animal waste; Tekirdag City Example. Journal of Scientific and Engineering Research, 5(1): 92-96.
  • Tipi, T., Çetin, B., Vardar, A. (2009). An analysis of energy use and input costs for wheat production in Turkey. Journal of Food, Agriculture and Environment, 7(2): 352-356.
  • Unakıtan, G., Aydın, B. (2018). A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace region. Energy, 149: 279-285.
  • Vossen, P. (2007). Olive oil: History, production, and characteristics of the World’s classic oils. HortScience, 42(5): 1093-1100.
  • Yilmaz, H., Aydin, B. (2020). Comparative input-output energy analysis of citrus production in Turkey: Case of Adana Province. Erwerbs-Obstbau, 62: 29-36.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-4933-7144
Author: Osman GÖKDOĞAN (Primary Author)
Institution: ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TARIM MAKİNELERİ VE TEKNOLOJİLERİ MÜHENDİSLİĞİ BÖLÜMÜ, TARIM MAKİNELERİ VE TEKNOLOJİLERİ MÜHENDİSLİĞİ PR.
Country: Turkey


Orcid: 0000-0003-1466-3035
Author: Oktay ERDOĞAN
Institution: PAMUKKALE ÜNİVERSİTESİ, UYGULAMALI BİLİMLER YÜKSEKOKULU, ORGANİK TARIM İŞLETMECİLİĞİ BÖLÜMÜ, ORGANİK TARIM İŞLETMECİLİĞİ PR.
Country: Turkey


Supporting Institution -
Project Number -
Thanks -
Dates

Publication Date : April 30, 2021

APA Gökdoğan, O , Erdoğan, O . (2021). Zeytin Yetiştiriciliğinde Enerji Kullanım Etkinliğinin ve Sera Gazı (GHG) Emisyonunun Belirlenmesi . Avrupa Bilim ve Teknoloji Dergisi , (23) , 717-724 . DOI: 10.31590/ejosat.903907