Research Article
BibTex RIS Cite

Variable Stiffness Woven Fabrics with Curved Advanced Fibers

Year 2021, Issue: 24, 430 - 435, 15.04.2021
https://doi.org/10.31590/ejosat.898542

Abstract

A novel method for production of variable stiffness woven fabrics with curved advanced fibers is presented. A scalable concept design is introduced. Several variable stiffness fabrics are woven by the prototype loom. The weaving process and woven fabrics are examined. Two distinct regions of the fabric which are showing different behaviors are observed. Based on the two regions identified the curved fibers of the woven fabric are simplified and modeled as a three-dimensional unit mesh. Geometry variation of the curved fibers and stiffness variation of the woven fabrics are discussed for these two distinct regions by using the developed model.

Supporting Institution

Trakya University

Project Number

TUBAP-2018/88

References

  • Ashir, M., Nocke, A., & Cherif, C. (2020). Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology. Textile Research Journal, 90(9-10), 981-990.
  • August, Z., Ostrander, G., Michasiow, J., & Hauber, D. (2014). Recent developments in automated fiber placement of thermoplastic composites. SAMPE J, 50(2), 30-37.
  • Bai, J. (2013). Advanced fibre-reinforced polymer (FRP) composites for structural applications: Elsevier.
  • Blom, A. W., Setoodeh, S., Hol, J. M., & Gürdal, Z. (2008). Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Computers & structures, 86(9), 870-878.
  • Blom, A. W., Stickler, P. B., & Gürdal, Z. (2010). Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction. Composites Part B: Engineering, 41(2), 157-165.
  • Brooks, T. R., & Martins, J. R. R. A. (2018). On manufacturing constraints for tow-steered composite design optimization. Composite structures, 204, 548-559.
  • Campbell, F. C. (2010). Structural composite materials: ASM international.
  • Crothers, P., Drechsler, K., Feltin, D., Herszberg, I., & Kruckenberg, T. (1997). Tailored fibre placement to minimise stress concentrations. Composites Part A: Applied Science and Manufacturing, 28(7), 619-625.
  • Dirk, H. J. A. L., Ward, C., & Potter, K. D. (2012). The engineering aspects of automated prepreg layup: History, present and future. Composites Part B: Engineering, 43(3), 997-1009.
  • Gurdal, Z., & Olmedo, R. (1993). In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept. AIAA journal, 31(4), 751-758.
  • Günay, M. G., & Timarci, T. (2017). Static analysis of thin-walled laminated composite closed-section beams with variable stiffness. Composite structures, 182, 67-78.
  • Günay, M. G., & Timarcı, T. (2019). Stresses in thin-walled composite laminated box-beams with curvilinear fibers: Antisymmetric and symmetric fiber paths. Thin-Walled Structures, 138, 170-182.
  • Gürdal, Z., Tatting, B. F., & Wu, C. (2008). Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response. Composites Part A: Applied Science and Manufacturing, 39(5), 911-922.
  • Hyer, M. W., & Charette, R. (1991). Use of curvilinear fiber format in composite structure design. AIAA journal, 29(6), 1011-1015.
  • Hyer, M. W., & Lee, H. (1991). The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Composite structures, 18(3), 239-261.
  • Jones, R. M. X. (1998). Mechanics of composite materials: CRC press.
  • Kim, B. C., Potter, K., & Weaver, P. M. (2012). Continuous tow shearing for manufacturing variable angle tow composites. Composites Part A: Applied Science and Manufacturing, 43(8), 1347-1356.
  • Kim, B. C., Weaver, P. M., & Potter, K. (2014). Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites. Composites Part A: Applied Science and Manufacturing, 61, 141-151.
  • Leissa, A., & Martin, A. (1990). Vibration and buckling of rectangular composite plates with variable fiber spacing. Composite structures, 14(4), 339-357.
  • Lenz, C., Trinh, X. T., & Gries, T. (2016). Auslegung von Faser-verbundbauteilen auf Basis von Tailored Textiles. Lightweight Design, 9(3), 36-41.
  • Smith, F., & Grant, C. (2006). Automated processes for composite aircraft structure. Industrial Robot: An International Journal.
  • Zamani, Z., Haddadpour, H., & Ghazavi, M.-R. (2011). Curvilinear fiber optimization tools for design thin walled beams. Thin-Walled Structures, 49(3), 448-454.
  • Zhang, W., Liu, F., Lv, Y., & Ding, X. (2020). Modelling and layout design for an automated fibre placement mechanism. Mechanism and Machine Theory, 144, 103651.

Gelişmiş Eğrisel Fiberli Değişken Rijitlikli Dokunmuş Kumaşlar

Year 2021, Issue: 24, 430 - 435, 15.04.2021
https://doi.org/10.31590/ejosat.898542

Abstract

Bu çalışmada eğrisel gelişmiş ipliklere sahip değişken rijitlikli dokuma kumaşların üretimi için yeni bir yöntem sunulmuştur. Ölçeklenebilir bir konsept tasarım tanıtılmıştır. Prototip dokuma tezgahı ile değişken rijitlikli kumaşlar dokunmuştur. Dokuma işlemi ve dokunan kumaşlar incelenmiştir. Kumaşlarda farklı davranışlar gösteren iki ayrı bölgenin olduğu gözlenmiştir. Belirlenen iki bölgeye dayanarak, dokuma kumaşın eğimli iplikleri basitleştirilmiş ve üç boyutlu birim yapı olarak modellenmiştir. Eğri ipliklerin geometri değişimi ve dokuma kumaşların rijitlik değişimi, geliştirilen model kullanılarak bu iki farklı bölge için tartışılmıştır.

Project Number

TUBAP-2018/88

References

  • Ashir, M., Nocke, A., & Cherif, C. (2020). Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology. Textile Research Journal, 90(9-10), 981-990.
  • August, Z., Ostrander, G., Michasiow, J., & Hauber, D. (2014). Recent developments in automated fiber placement of thermoplastic composites. SAMPE J, 50(2), 30-37.
  • Bai, J. (2013). Advanced fibre-reinforced polymer (FRP) composites for structural applications: Elsevier.
  • Blom, A. W., Setoodeh, S., Hol, J. M., & Gürdal, Z. (2008). Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Computers & structures, 86(9), 870-878.
  • Blom, A. W., Stickler, P. B., & Gürdal, Z. (2010). Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction. Composites Part B: Engineering, 41(2), 157-165.
  • Brooks, T. R., & Martins, J. R. R. A. (2018). On manufacturing constraints for tow-steered composite design optimization. Composite structures, 204, 548-559.
  • Campbell, F. C. (2010). Structural composite materials: ASM international.
  • Crothers, P., Drechsler, K., Feltin, D., Herszberg, I., & Kruckenberg, T. (1997). Tailored fibre placement to minimise stress concentrations. Composites Part A: Applied Science and Manufacturing, 28(7), 619-625.
  • Dirk, H. J. A. L., Ward, C., & Potter, K. D. (2012). The engineering aspects of automated prepreg layup: History, present and future. Composites Part B: Engineering, 43(3), 997-1009.
  • Gurdal, Z., & Olmedo, R. (1993). In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept. AIAA journal, 31(4), 751-758.
  • Günay, M. G., & Timarci, T. (2017). Static analysis of thin-walled laminated composite closed-section beams with variable stiffness. Composite structures, 182, 67-78.
  • Günay, M. G., & Timarcı, T. (2019). Stresses in thin-walled composite laminated box-beams with curvilinear fibers: Antisymmetric and symmetric fiber paths. Thin-Walled Structures, 138, 170-182.
  • Gürdal, Z., Tatting, B. F., & Wu, C. (2008). Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response. Composites Part A: Applied Science and Manufacturing, 39(5), 911-922.
  • Hyer, M. W., & Charette, R. (1991). Use of curvilinear fiber format in composite structure design. AIAA journal, 29(6), 1011-1015.
  • Hyer, M. W., & Lee, H. (1991). The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Composite structures, 18(3), 239-261.
  • Jones, R. M. X. (1998). Mechanics of composite materials: CRC press.
  • Kim, B. C., Potter, K., & Weaver, P. M. (2012). Continuous tow shearing for manufacturing variable angle tow composites. Composites Part A: Applied Science and Manufacturing, 43(8), 1347-1356.
  • Kim, B. C., Weaver, P. M., & Potter, K. (2014). Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites. Composites Part A: Applied Science and Manufacturing, 61, 141-151.
  • Leissa, A., & Martin, A. (1990). Vibration and buckling of rectangular composite plates with variable fiber spacing. Composite structures, 14(4), 339-357.
  • Lenz, C., Trinh, X. T., & Gries, T. (2016). Auslegung von Faser-verbundbauteilen auf Basis von Tailored Textiles. Lightweight Design, 9(3), 36-41.
  • Smith, F., & Grant, C. (2006). Automated processes for composite aircraft structure. Industrial Robot: An International Journal.
  • Zamani, Z., Haddadpour, H., & Ghazavi, M.-R. (2011). Curvilinear fiber optimization tools for design thin walled beams. Thin-Walled Structures, 49(3), 448-454.
  • Zhang, W., Liu, F., Lv, Y., & Ding, X. (2020). Modelling and layout design for an automated fibre placement mechanism. Mechanism and Machine Theory, 144, 103651.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhsin Gökhan Günay 0000-0002-8895-1710

Taner Timarcı This is me 0000-0003-3966-7614

Project Number TUBAP-2018/88
Publication Date April 15, 2021
Published in Issue Year 2021 Issue: 24

Cite

APA Günay, M. G., & Timarcı, T. (2021). Variable Stiffness Woven Fabrics with Curved Advanced Fibers. Avrupa Bilim Ve Teknoloji Dergisi(24), 430-435. https://doi.org/10.31590/ejosat.898542