Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Al/SiC Kompozit Malzemelerde Seramik Bileşenin Hacimsel Oranının Elektriksel ve Isıl Özellikler Üzerindeki Etkilerinin Deneysel İncelemesi

Year 2021, Volume , Issue 25, 721 - 726, 31.08.2021
https://doi.org/10.31590/ejosat.943506

Abstract

Bu çalışmada Al/SiC metal matris kompozit malzemelerde, seramik bileşenin hacimsel değişiminin elektiriksel ve ısıl iletkenlik üzerindeki etkileri 273K- 373K sıcaklık aralığında, deneysel olarak ile incelenmiştir. Test sonuçlarında, sıcaklığın ve seramik bileşenin hacimsel oranının artmasıyla elektriksel direncin arttığı ve elektiriksel iletkenliğin azaldığı görülmüştür. Seramik bileşenin yapı içerisindeki hacimsel oranı %60’a artması ile elektriksel iletkenlik 1,8x107 1/ohm.m değerinden 2x106 1/ohm.m değerine düşmüştür. Ayrıca metal matris kompozit malzemelerde seramik bileşenin artması ile termal iletkenliği azalmış olup 273 ila 373K arasındaki sıcaklık değişiminin ısıl iletkenlik üzerinde önemli bir etkisi olmamıştır. Seramik bileşenin hacimsel oranının %60’a çıkması ile ısıl iletkenlik 120 W/mK değerinden 10 W/mK değerine düşmüştür.

References

  • B. Torres, M. Lieblich, J. Ibáñez, & A. Garcı́a-Escorial (2002). Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites. Scripta Materialia, 47(1), 45-49.
  • Bekir Sadık Ünlü (2008). Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Materials & Design, 29(10), 2002-2008.
  • Bevington, R., & Han Kim (1979). Thermophysical Properties of Ag-CdO Composite Materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 2(1), 46-51.
  • Bowen Xiong, Zhifeng Xu, Qingsong Yan, Baiping Lu, & Changchun Cai (2011). Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. Journal of Alloys and Compounds, 509(4), 1187-1191.
  • Cem OKUMUS, S., Aslan, S., Karslioglu, R., Gultekin, D., & Akbulut, H. (2012). Thermal Expansion and Thermal Conductivity Behaviors of Al-Si/SiC/graphite Hybrid Metal Matrix Composites (MMCs). Materials Science, 18(4), 341–346.
  • Evans, A., San Marchi, C., & Mortensen, A. (2003). Metal Matrix Composites in Industry An Introduction and a Survey / by Alexander Evans, Christopher San Marchi, Andreas Mortensen.. Springer US : Imprint: Springer
  • Hojoon Yi, Ji Yeon Kim, Hamza Zad Gul, Seungsu Kang, Giheon Kim, Eunji Sim, Hyunjin Ji, Jungwon Kim, Young Chul Choi, Won Seok Kim, & Seong Chu Lim (2020). Wiedemann-Franz law of Cu-coated carbon fiber. Carbon, 162, 339-345.
  • K Srinivas, M S Bhagyashekar, & B G Darshan (2018). Journal of Polymer & Composites Effect of Fillers on Electrical Conductivity of Epoxy Composites, 6(3).
  • Kahveci, O., Çadirli, E., Arı, M., Tecer, H., & Gündüz, M. (2019). Measurement and Prediction of the Thermal and Electrical Conductivity of Al-Zr Overhead Line Conductors at Elevated Temperatures. Materials Research, 22(1), e20180513.
  • L. Weber, J. Dorn, & A. Mortensen (2003). On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia, 51(11), 3199-3211.
  • Lavernia, E., Perez, R., & Zhang, J. (1995). Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A, 26(11), 2803–2818.
  • Lee, H., Jeon, K., Kim, H., & Hong, S. (2000). Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. Journal of Materials Science, 35(24), 6231–6236.
  • Manish Patel, V.V. Bhanu Prasad, & Vikram Jayaram (2013). Heat conduction mechanisms in hot pressed ZrB2 and ZrB2–SiC composites. Journal of the European Ceramic Society, 33(10), 1615-1624.
  • Ming-hai GUO, Jun-you LIU, & Yan-xia LI (2014). Microstructure and properties of SiCp/Al electronic packaging shell produced by liquid–solid separation. Transactions of Nonferrous Metals Society of China, 24(4), 1039-1045.
  • Mortensen, A., & Llorca, J. (2010). Metal Matrix Composites. Annual Review of Materials Research, 40(1), 243-270.
  • Ravi, K., Pillai, R., Pai, B., & Chakraborty, M. (2007). A Novel Approach for Extracting and Characterizing Interfacial Reaction Products in Al-SiCpComposites. Metallurgical and Materials Transactions A, 38(7), 1666–1670.
  • S.A. Khadem, S. Nategh, & H. Yoozbashizadeh (2011). Structural and morphological evaluation of Al–5vol.%SiC nanocomposite powder produced by mechanical milling. Journal of Alloys and Compounds, 509(5), 2221-2226.
  • Safa Polat, Yavuz Sun, Engin Çevik, & Hendrik Colijn (2019). Evaluation of thermal conductivity of GNPs-doped B4C/Al-Si composites in terms of interface interaction and electron mobility. Diamond and Related Materials, 98, 107457.
  • Sahin, Y., & Murphy, S. (1996). The effect of fibre orientation of the dry sliding wear of borsic-reinforced 2014 aluminium alloy. Journal of Materials Science, 31(20), 5399–5407.
  • Salaway, R., Hopkins, P., Norris, P., & Stevens, R. (2008). Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations. International Journal of Thermophysics, 29(6), 1987–1996.
  • Sedat Ozden, Recep Ekici, & Fehmi Nair (2007). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 38(2), 484-494.
  • Singh, B., Kumar, J., & Kumar, S. (2013). Investigating the Influence of Process Parameters of ZNC EDM on Machinability of A6061/10\% SiC Composite. Advances in Materials Science and Engineering, 2013, 173427.
  • Singh, V., Chauhan, S., Gope, P., & Chaudhary, A. (2014). Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite. High Temperature Materials and Processes, 34(2): p. 163-170.
  • T.S. Srivatsan, Meslet Al-Hajri, & V.K. Vasudevan (2005). Cyclic plastic strain response and fracture behavior of 2009 aluminum alloy metal-matrix composite. International Journal of Fatigue, 27(4), 357-371.
  • Tamer Ozben, Erol Kilickap, & Orhan Çakır (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology, 198(1), 220-225.
  • Tomohiro Kobayashi, Katsumi Yoshida, & Toyohiko Yano (2013). Microstructure, mechanical and thermal properties of B4C/CNT composites with Al additive. Journal of Nuclear Materials, 440(1), 524-529.
  • Weber, L., Sinicco, G., & Molina, J. (2010). Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. Journal of Materials Science, 45(8), 2203–2209.
  • Zhang Peng, & Li Fuguo (2010). Effects of Particle Clustering on the Flow Behavior of SiC Particle Reinforced Al Metal Matrix Composites. Rare Metal Materials and Engineering, 39(9), 1525-1531.
  • Zweben, C. (1992). Metal-matrix composites for electronic packaging. JOM, 44(7), 15–23.

An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites

Year 2021, Volume , Issue 25, 721 - 726, 31.08.2021
https://doi.org/10.31590/ejosat.943506

Abstract

Al/SiC metal-matrix composites were investigated through Differential Thermal Analysis device as a function of volume fraction of SiC particles and sample temperature ranging 273 K to 373 K. It was found that electrical resistivity increased with increasing sample temperature and volume fraction of SiC. In contrast to electrical resistivity, electrical conductivity decreased with increasing sample temperature and volume fraction of SiC. Electrical conductivity decreased from 1,8x107 1/ohm.m to 2x106 1/ohm.m as the volume fraction of SiC increased to 60%. On the other hand, thermal conductivity decreased with increasing volume fraction of SiC particles, while being almost insensitive to temperature change between 273 K to 373 K. Thermal conductivity decreased from 120 W/mK to 10 W/mK as the volume fraction of SiC increased to 60%.

References

  • B. Torres, M. Lieblich, J. Ibáñez, & A. Garcı́a-Escorial (2002). Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites. Scripta Materialia, 47(1), 45-49.
  • Bekir Sadık Ünlü (2008). Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Materials & Design, 29(10), 2002-2008.
  • Bevington, R., & Han Kim (1979). Thermophysical Properties of Ag-CdO Composite Materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 2(1), 46-51.
  • Bowen Xiong, Zhifeng Xu, Qingsong Yan, Baiping Lu, & Changchun Cai (2011). Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. Journal of Alloys and Compounds, 509(4), 1187-1191.
  • Cem OKUMUS, S., Aslan, S., Karslioglu, R., Gultekin, D., & Akbulut, H. (2012). Thermal Expansion and Thermal Conductivity Behaviors of Al-Si/SiC/graphite Hybrid Metal Matrix Composites (MMCs). Materials Science, 18(4), 341–346.
  • Evans, A., San Marchi, C., & Mortensen, A. (2003). Metal Matrix Composites in Industry An Introduction and a Survey / by Alexander Evans, Christopher San Marchi, Andreas Mortensen.. Springer US : Imprint: Springer
  • Hojoon Yi, Ji Yeon Kim, Hamza Zad Gul, Seungsu Kang, Giheon Kim, Eunji Sim, Hyunjin Ji, Jungwon Kim, Young Chul Choi, Won Seok Kim, & Seong Chu Lim (2020). Wiedemann-Franz law of Cu-coated carbon fiber. Carbon, 162, 339-345.
  • K Srinivas, M S Bhagyashekar, & B G Darshan (2018). Journal of Polymer & Composites Effect of Fillers on Electrical Conductivity of Epoxy Composites, 6(3).
  • Kahveci, O., Çadirli, E., Arı, M., Tecer, H., & Gündüz, M. (2019). Measurement and Prediction of the Thermal and Electrical Conductivity of Al-Zr Overhead Line Conductors at Elevated Temperatures. Materials Research, 22(1), e20180513.
  • L. Weber, J. Dorn, & A. Mortensen (2003). On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia, 51(11), 3199-3211.
  • Lavernia, E., Perez, R., & Zhang, J. (1995). Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A, 26(11), 2803–2818.
  • Lee, H., Jeon, K., Kim, H., & Hong, S. (2000). Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. Journal of Materials Science, 35(24), 6231–6236.
  • Manish Patel, V.V. Bhanu Prasad, & Vikram Jayaram (2013). Heat conduction mechanisms in hot pressed ZrB2 and ZrB2–SiC composites. Journal of the European Ceramic Society, 33(10), 1615-1624.
  • Ming-hai GUO, Jun-you LIU, & Yan-xia LI (2014). Microstructure and properties of SiCp/Al electronic packaging shell produced by liquid–solid separation. Transactions of Nonferrous Metals Society of China, 24(4), 1039-1045.
  • Mortensen, A., & Llorca, J. (2010). Metal Matrix Composites. Annual Review of Materials Research, 40(1), 243-270.
  • Ravi, K., Pillai, R., Pai, B., & Chakraborty, M. (2007). A Novel Approach for Extracting and Characterizing Interfacial Reaction Products in Al-SiCpComposites. Metallurgical and Materials Transactions A, 38(7), 1666–1670.
  • S.A. Khadem, S. Nategh, & H. Yoozbashizadeh (2011). Structural and morphological evaluation of Al–5vol.%SiC nanocomposite powder produced by mechanical milling. Journal of Alloys and Compounds, 509(5), 2221-2226.
  • Safa Polat, Yavuz Sun, Engin Çevik, & Hendrik Colijn (2019). Evaluation of thermal conductivity of GNPs-doped B4C/Al-Si composites in terms of interface interaction and electron mobility. Diamond and Related Materials, 98, 107457.
  • Sahin, Y., & Murphy, S. (1996). The effect of fibre orientation of the dry sliding wear of borsic-reinforced 2014 aluminium alloy. Journal of Materials Science, 31(20), 5399–5407.
  • Salaway, R., Hopkins, P., Norris, P., & Stevens, R. (2008). Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations. International Journal of Thermophysics, 29(6), 1987–1996.
  • Sedat Ozden, Recep Ekici, & Fehmi Nair (2007). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 38(2), 484-494.
  • Singh, B., Kumar, J., & Kumar, S. (2013). Investigating the Influence of Process Parameters of ZNC EDM on Machinability of A6061/10\% SiC Composite. Advances in Materials Science and Engineering, 2013, 173427.
  • Singh, V., Chauhan, S., Gope, P., & Chaudhary, A. (2014). Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite. High Temperature Materials and Processes, 34(2): p. 163-170.
  • T.S. Srivatsan, Meslet Al-Hajri, & V.K. Vasudevan (2005). Cyclic plastic strain response and fracture behavior of 2009 aluminum alloy metal-matrix composite. International Journal of Fatigue, 27(4), 357-371.
  • Tamer Ozben, Erol Kilickap, & Orhan Çakır (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology, 198(1), 220-225.
  • Tomohiro Kobayashi, Katsumi Yoshida, & Toyohiko Yano (2013). Microstructure, mechanical and thermal properties of B4C/CNT composites with Al additive. Journal of Nuclear Materials, 440(1), 524-529.
  • Weber, L., Sinicco, G., & Molina, J. (2010). Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. Journal of Materials Science, 45(8), 2203–2209.
  • Zhang Peng, & Li Fuguo (2010). Effects of Particle Clustering on the Flow Behavior of SiC Particle Reinforced Al Metal Matrix Composites. Rare Metal Materials and Engineering, 39(9), 1525-1531.
  • Zweben, C. (1992). Metal-matrix composites for electronic packaging. JOM, 44(7), 15–23.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat AYDIN (Primary Author)
ERCİYES ÜNİVERSİTESİ
0000-0003-3713-3029
Türkiye

Supporting Institution Çalışmayı destekleyen bir kurum bulunmamaktadır.
Publication Date August 31, 2021
Published in Issue Year 2021, Volume , Issue 25

Cite

Bibtex @research article { ejosat943506, journal = {Avrupa Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2683}, address = {}, publisher = {Osman SAĞDIÇ}, year = {2021}, volume = {}, pages = {721 - 726}, doi = {10.31590/ejosat.943506}, title = {An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites}, key = {cite}, author = {Aydın, Murat} }
APA Aydın, M. (2021). An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites . Avrupa Bilim ve Teknoloji Dergisi , (25) , 721-726 . DOI: 10.31590/ejosat.943506
MLA Aydın, M. "An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites" . Avrupa Bilim ve Teknoloji Dergisi (2021 ): 721-726 <https://dergipark.org.tr/en/pub/ejosat/issue/62595/943506>
Chicago Aydın, M. "An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites". Avrupa Bilim ve Teknoloji Dergisi (2021 ): 721-726
RIS TY - JOUR T1 - An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites AU - Murat Aydın Y1 - 2021 PY - 2021 N1 - doi: 10.31590/ejosat.943506 DO - 10.31590/ejosat.943506 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 721 EP - 726 VL - IS - 25 SN - -2148-2683 M3 - doi: 10.31590/ejosat.943506 UR - https://doi.org/10.31590/ejosat.943506 Y2 - 2021 ER -
EndNote %0 European Journal of Science and Technology An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites %A Murat Aydın %T An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites %D 2021 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 25 %R doi: 10.31590/ejosat.943506 %U 10.31590/ejosat.943506
ISNAD Aydın, Murat . "An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites". Avrupa Bilim ve Teknoloji Dergisi / 25 (August 2021): 721-726 . https://doi.org/10.31590/ejosat.943506
AMA Aydın M. An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites. EJOSAT. 2021; (25): 721-726.
Vancouver Aydın M. An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites. Avrupa Bilim ve Teknoloji Dergisi. 2021; (25): 721-726.
IEEE M. Aydın , "An Experimental Study of The Effects of Ceramic Composition on The Electrical and Thermal Properties of Al/SiC Composites", Avrupa Bilim ve Teknoloji Dergisi, no. 25, pp. 721-726, Aug. 2021, doi:10.31590/ejosat.943506