Research Article
BibTex RIS Cite

Hoverwing Araçlarda Kaldırma Sistemi için Gövde Tasarımı ve Analizi

Year 2021, Issue: 27, 526 - 531, 30.11.2021
https://doi.org/10.31590/ejosat.947307

Abstract

Hava yastıklı taşıtlar hem kara hem de su operasyonlarında kullanılmaya müsait amfibi taşıtlardır. Bu taşıtlar çoğu hava aracı gibi havalanabilmek için kanatlara ihtiyaç duyarken, aynı zamanda gövdesinin alt kısmından basınçlı havayı koşullandırarak yukarı yönde kuvvet oluşturur. Yönlendirilmiş hava ve aracın ağırlığı sebebiyle gövde altında basınçlı bir hava bölgesi oluşur (Air cushion). Böylece hoverwing kum, çakıl, çamur ve su üstünde uçak gibi uçarken aynı zamanda da bot gibi suda yüzdürülebilir. Bu çalışmada üretilmesine karar verilen bir howerwing taşıtın gövdesine eklenecek olan kaldırma sistem tasarımı ele alınmıştır. Bu süreç esnasında hull Solidworks'de çizilmiş, Ansys Fluent’te akış analizleri yapılmıştır. Bu analizler doğrultusunda optimum inlet açısının “realizable k-e” türbülans modellemesi kullanılarak 220 olduğu saptanmıştır. Böylece gövde çıkışlarından etek girişlerine laminer ve yeterli basınçta hava dağıtımı yapılırken bu havayı sağlayacak inlet, aracın genel tasarımına uygun bir şekilde tasarlanmıştır.

References

  • Abele , G., & Brown, J. (1977). Arctic transportation: operational and environmental evaluation of an Air Cushion Vehicle in Northern Alaska.
  • Akdemir, S., Öztürk, S., Edis, F. O., & Ülger, P. (2012). Soğuk hava depolarında ortam koşullarının hesaplamalı akışkanlar dinamiği (CFD) ile modellenmesi. Tarım Makinaları Bilimi Dergisi, 241-248.
  • Bal, Ş. (2019). DEĞİŞKEN ENKESİTLİ AÇIK KANAL AKIMININ DENEYSEL VE SAYISAL MODELLEMESİ. http://acikerisim.harran.edu.tr:8080/jspui/bitstream/11513/2067/1/555791.pdf adresinden alındı
  • Bhaskaran, R., & Collins, L. (2002). Introduction to CFD basics. 1-21. Cornell University-Sibley School of Mechanical and Aerospace Engineering.
  • Broughton, K., Martin, D., Williams, D., & Wunderlin, N. (2016). Multipurpose Off-road Flying Vehicle.
  • Durgawale, A. A., Raut, S. S., Suryawanshi, A. L., Patil, S. P., & Mali, V. P. (2017). Design and Fabrication of Hovercraft. International Engineering Research Journal, 1-4.
  • Launder, B., & Sharma, B. I. (1974). APPLICATION OF THE ENERGY-DISSIPATION MODEL OF TURBULENCE TO THE CALCULATION OF FLOW NEAR A SPINNING DISC. LETTERS IN HEAT AND MASS TRANSFER, 131-138.
  • Okafor, B. (2013). Development of a Hovercraft Prototype. International Journal of Engineering Technologies, 276-281.
  • Özcan, O., & Kaya, K. (2013). A numerical investigation on aerodynamic characteristicsof an air-cushion vehicle. Journal of Wind Engineering and Industrial Aerodynamics, 70-80.
  • Paval, M. S., Popescu, A., Popescu, T., Zahariea, D., & Husaru, D. E. (2018). Numerical study on the movement of air inside the inner cavity of a hovercraft model. IOP Conference Series: Materials Science and Engineering, (s. 1-10).
  • Spalding, D. B., Launder, B. E., Morse,, A. P., & Maples, G. (1974). COMBUSTION OF HYDROGEN-AIR JETS IN LOCAL CHEMICAL EQUILIBRIUM.
  • Şahin , H. M., Dal, A. R., & Özkaya, M. (2020). Numerical Analysis by RNG k-ε Turbulent Model of a Concentric Tube Heat Exchanger with Coiled Wire Turbulator . Fen Bilimleri Dergisi, 64-78.
  • Tiwari, A. (2015). TO STUDY AND FABRICATION OF AIR CUSHION VEHİCLE. INTERNATİONAL JOURNAL OF RESERACH, 70-84.
  • Tu, J., & Yeoh, G. H. (2018). Computational Fluid Dynamics (A Practical Approach). Butterworth-Heinemann.
  • Xia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. ELSEVIER, 5-24.

Fusulage Design and Analysis for Lifting System in Hoverwing Vehicles

Year 2021, Issue: 27, 526 - 531, 30.11.2021
https://doi.org/10.31590/ejosat.947307

Abstract

Air cushion vehicles are amphibious vehicles suitable for use in both land and water operations. While these vehicles, like most aircraft, need wings to take off, they also create an upward force by conditioning the compressed air from the lower part of the body. Due to the directed air and the weight of the vehicle, a compressed air zone is created under the body (air cushion). Thus, the hoverwing can fly like an airplane on sand, gravel, mud, and water while at the same time floating in the water like a boat. In this study, the design of the lifting system to be added to the body of a howerwing vehicle decided to be produced is discussed. During this process, hull was drawn in Solidworks and flow analysis was made in Ansys Fluent. In line with these analyzes, it was determined that the optimum inlet angle was 220 by using "realizable k-e" turbulence modeling. Thus, while air is distributed from the body exits to the skirt inlets with laminar and sufficient pressure, the inlet that will provide this air has been designed in accordance with the general design of the vehicle.

References

  • Abele , G., & Brown, J. (1977). Arctic transportation: operational and environmental evaluation of an Air Cushion Vehicle in Northern Alaska.
  • Akdemir, S., Öztürk, S., Edis, F. O., & Ülger, P. (2012). Soğuk hava depolarında ortam koşullarının hesaplamalı akışkanlar dinamiği (CFD) ile modellenmesi. Tarım Makinaları Bilimi Dergisi, 241-248.
  • Bal, Ş. (2019). DEĞİŞKEN ENKESİTLİ AÇIK KANAL AKIMININ DENEYSEL VE SAYISAL MODELLEMESİ. http://acikerisim.harran.edu.tr:8080/jspui/bitstream/11513/2067/1/555791.pdf adresinden alındı
  • Bhaskaran, R., & Collins, L. (2002). Introduction to CFD basics. 1-21. Cornell University-Sibley School of Mechanical and Aerospace Engineering.
  • Broughton, K., Martin, D., Williams, D., & Wunderlin, N. (2016). Multipurpose Off-road Flying Vehicle.
  • Durgawale, A. A., Raut, S. S., Suryawanshi, A. L., Patil, S. P., & Mali, V. P. (2017). Design and Fabrication of Hovercraft. International Engineering Research Journal, 1-4.
  • Launder, B., & Sharma, B. I. (1974). APPLICATION OF THE ENERGY-DISSIPATION MODEL OF TURBULENCE TO THE CALCULATION OF FLOW NEAR A SPINNING DISC. LETTERS IN HEAT AND MASS TRANSFER, 131-138.
  • Okafor, B. (2013). Development of a Hovercraft Prototype. International Journal of Engineering Technologies, 276-281.
  • Özcan, O., & Kaya, K. (2013). A numerical investigation on aerodynamic characteristicsof an air-cushion vehicle. Journal of Wind Engineering and Industrial Aerodynamics, 70-80.
  • Paval, M. S., Popescu, A., Popescu, T., Zahariea, D., & Husaru, D. E. (2018). Numerical study on the movement of air inside the inner cavity of a hovercraft model. IOP Conference Series: Materials Science and Engineering, (s. 1-10).
  • Spalding, D. B., Launder, B. E., Morse,, A. P., & Maples, G. (1974). COMBUSTION OF HYDROGEN-AIR JETS IN LOCAL CHEMICAL EQUILIBRIUM.
  • Şahin , H. M., Dal, A. R., & Özkaya, M. (2020). Numerical Analysis by RNG k-ε Turbulent Model of a Concentric Tube Heat Exchanger with Coiled Wire Turbulator . Fen Bilimleri Dergisi, 64-78.
  • Tiwari, A. (2015). TO STUDY AND FABRICATION OF AIR CUSHION VEHİCLE. INTERNATİONAL JOURNAL OF RESERACH, 70-84.
  • Tu, J., & Yeoh, G. H. (2018). Computational Fluid Dynamics (A Practical Approach). Butterworth-Heinemann.
  • Xia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. ELSEVIER, 5-24.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömer Çağdaş Çınkır 0000-0002-4610-1267

Tugay Öztürk 0000-0002-2576-3974

Satılmış Ürgün 0000-0003-3889-6909

Sinan Fidan 0000-0003-4385-4981

Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA Çınkır, Ö. Ç., Öztürk, T., Ürgün, S., Fidan, S. (2021). Hoverwing Araçlarda Kaldırma Sistemi için Gövde Tasarımı ve Analizi. Avrupa Bilim Ve Teknoloji Dergisi(27), 526-531. https://doi.org/10.31590/ejosat.947307