Enerji Tasaruflu Döner Mil Keçelerinin Sonlu Elemanlar Analizi ile İncelenmesi
Year 2021,
Issue: 27, 325 - 333, 30.11.2021
Hasan Kasım
,
Barış Engin
İsmail Saraç
,
Murat Yazıcı
Abstract
Bu çalışmada yüksek devir ve sıcaklıklarda çalışabilen yeni nesil elektrikli araçların güç aktarma organlarında kullanılmak üzere prototipi üretilen, kauçuk malzeme esaslı enerji tasarruflu döner mil keçelerinin(ESS) statik yükleme durumundaki radyal kuvvet, temas eden tırtıl sayısı ve temas yüzeylerinin durumu deneysel ve sonlu elemanlar analiziyle (FEA) incelenmiştir. ESS’lerin dayanım ömrünü etkileyen radyal kuvvet için yapılan deneysel ölçümler ile FEA sonuçları arasında %9’a kadar bir fark görülmüştür. Kauçuk malzeme testlerinden elde edilen veriler, Abaqus sistemi ile eşleştirilerek Mooey-Rivlin malzeme katsayı değerleri hesaplanmıştır. Hazırlanan FEA prosedürü sayesinde de sızdırmazlık elemanının montajı sırasındaki hareketi, reaksiyon kuvveti, dudakta meydana gelen diğer değişimler rahatlıkla gözlenmiştir. Temas eden tırtıl sayıları her iki çalışma içinde aynı olup, temas yüzeyleri arasında %2’lik bir sapma değeri elde edilmiştir. Bu şekilde, sızdırmazlık elemanlarının tasarlanması doğru malzeme tanımlamasına bağlı, prototip ihtiyacı duyulmadan sonlu elemanlar analizi ile zaman kazandıran alternatif bir geliştirme yöntemi olarak kullanılabileceği görülmüştür.
Supporting Institution
SKT Yedek Parça ve Makine San. ve Tic. A.Ş
Thanks
Bu çalışma için gerekli olan kompozit numunelerin ve test ekipmanının kullanımını sağlayan SKT Yedek Parça ve Makine San. ve Tic. A.Ş Arge Merkezi çalışanlarına teşekkür ederiz.
References
- Johnston, D.E., Bond, R. (1984). A new concept in rotary shaft seal design suitable for truck and bus hub seal applications. SAE Technical Papers, 93(May), 1081–1091. https://doi.org/10.4271/841713
- Bien-aimé, L. K. M., Blaise, B. B., Beda, T. (2020). Characterization of hyperelastic deformation behavior of rubber-like materials. SN Applied Sciences, 2(4). https://doi.org/10.1007/s42452-020-2355-6
- Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759–764. https://doi.org/10.1007/s12541-012-0099-y
- Bhandari, A., Erdman, D., Bhatia, A., Strang, W. (2007). Finite Element Analysis and Material Modeling of Elastomeric Components and Assemblies: Some Practical Considerations. In SAE Technical Papers (Vol. 2007-January). SAE International. https://doi.org/10.4271/2007-26-041
- Li, W., Mays, S., & Lam, D. (2002). Material and finite element analysis of poly(tetrafluoroethylene) rotary seals. Plastics, Rubber and Composites, 31(8), 359–363. https://doi.org/10.1179/146580102225004974
- Zhang, F. Y., Chen, J. L., Li, T. T., Zhang, Y. F. (2019). Study and Optimization of Structural Parameters of Oil Seal by Response Surface Method. International Journal of Precision Engineering and Manufacturing, 20(2), 255–265.
https://doi.org/10.1007/s12541-019-00067-3
- Starostin, N.P., Vasileva, M.A. (2020). Determination of Load-Speed Modes for Fluoroplastic Seals of Rotary Shaft by Temperature Limitation. IOP Conference Series: Earth and Environmental Science, 459(6). https://doi.org/10.1088/1755-1315/459/6/062080
- Zhou, S. M., Chen, P., Shi, Y. (2015). Analysis on Sealing Performance for a New Type of Rubber Saddle-shaped Sealing Ring Based on AQAQUS. In Procedia Engineering (Vol. 130, pp. 1000–1009). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2015.12.252
- Calonius, O., Pietola, M. (2005). Explicit Finite Element Analysis of Tracking Capability of Rotary Face Seal for Industrial Fluid Power Applications. Proceedings of the JFPS International Symposium on Fluid Power, 2005(6), 328–333. https://doi.org/10.5739/isfp.2005.328
- Azura, A.R., Leow, S.L. (2019). Effect of carbon black loading on mechanical, conductivity and ageing properties of Natural Rubber composites. In Materials Today: Proceedings (Vol. 17, pp. 1056–1063). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2019.06.512
- Li, H., Zhao, T., Chen, M. (2016). Green tire and new type rubber materials. Kexue Tongbao/Chinese Science Bulletin, 61(31), 3297–3303. https://doi.org/10.1360/N972016-01118
- Vahapoğlu, V . (2013). Kauçuk Mekaniğinde Yapılan Deneyler . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 19 (1) , 33-60 . Retrieved from https://dergipark.org.tr/tr/pub/pajes/issue/20494/218212
- Keerthiwansa, R., Javorik, J., Kledrowetz, J., Nekoksa, P. (2018). Elastomer testing: The risk of using only uniaxial data for fitting the Mooney-Rivlin hyperelastic-material model. Materiali in Tehnologije, 52(1), 3–8.
https://doi.org/10.17222/mit.2017.085
- Dalrymple, T., Choi, J., Miller, K. (2007). Elastomer rate-dependence: a testing and material modelling methodology. Meeting of the Rubber Division of , (October 2007). Retrieved from http://www.axelproducts.com/downloads/Elastomer_Rate_Dependence_Paper.pdf
- Abdullah, M. A. (2020). Fundamental Considerations for Finite Element Modelling of Rubber Material Tensile Test. International Journal of Engineering and Management Sciences, 5(2), 7–13. https://doi.org/10.21791/ijems.2020.2.2.
- Sasso, M., Palmieri, G., Chiappini, G., Amodio, D. (2008). Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polymer Testing, 27(8), 995–1004. https://doi.org/10.1016/j.polymertesting.2008.09.001
- Freitas, T. R. (2009). Rubber sealing study applied to ball-bearing components using finite element method. In SAE Technical Papers. SAE International. https://doi.org/10.4271/2009-36-0034
- Erkek, M , Kaya, N , Güven, C . (2015). Kauçuk Burçların Hiperelastik Modellenmesi ve Sonlu Elemanlar Yöntemi ile Analizi . Uludağ University Journal of The Faculty of Engineering , 20 (1) , 65-74 . Retrieved from https://dergipark.org.tr/tr/pub/uumfd/issue/21692/233534
- Fujikawa, M., Maeda, N., Yamabe, J., Kodama, Y., Koishi, M. (2014). Determining Stress–Strain in Rubber with In-Plane Biaxial Tensile Tester. Experimental Mechanics, 54(9), 1639–1649. https://doi.org/10.1007/s11340-014-9942-7
- Kanzenbach, L., Schlomka, C., Gelke, S., & Ihlemann, J. (2019). Specimen design for extreme uniaxial tension-compression tests of rubber materials. PAMM, 19(1). https://doi.org/10.1002/pamm.201900371
- Huri, D., Mankovits, T. (2018). Comparison of the material models in rubber finite element analysis. In IOP Conference Series: Materials Science and Engineering (Vol. 393). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/393/1/012018
- Xu, D., Han, B. H., He, W. H., Cheng, Z. G. (2018). Research on compressive mechanical properties of metal rubber and its constitutive relation model. Journal of Vibroengineering, 20(1), 332–344. https://doi.org/10.21595/jve.2017.18235
- Ismail, R., Ibrahim, A., Rusop, M., Adnan, A. (2018). Determination of mechanical properties natural rubber compounds using double shear test pieces. International Journal of Civil Engineering and Technology, 9(8), 37–43.
- Soltani, A., Deng, A., Taheri, A., Mirzababaei, M., Nikraz, H. (2019). Interfacial shear strength of rubber-reinforced clays: A dimensional analysis perspective. Geosynthetics International, 26(2), 164–183. https://doi.org/10.1680/jgein.18.00045
- Yang, Y., Ren, Z. Y., Bai, H., Shen, D., Zhang, B. (2020). Study on the Mechanical Properties of Metal Rubber Inner Core of O-Type Seal with Large Ring-to-Diameter Ratio. Advances in Materials Science and Engineering, 2020.
https://doi.org/10.1155/2020/2875947
- Yakovlev, S.N. (2019). An Experimental Study of the Wear of the Radial Shaft Seals of Rotary Shafts. Journal of Machinery Manufacture and Reliability, 48(2), 179–183. https://doi.org/10.3103/S105261881902016X
- Kumar, N., Rao, V. V. (2016). Hyperelastic Mooney-Rivlin Model : Determination and Physical Interpretation of Material Constants. MIT International Journal of Mechanical Engineering, 6(1), 43–46.
- Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759–764. https://doi.org/10.1007/s12541-012-0099-y
- Engin, B., Saraç, Yazıcı, M. (2019). Finite element simulation of rotary shaft lip seals. Acta Physica Polonica A, 135(5), 1072–1074. https://doi.org/10.12693/APhysPolA.135.1072
- Zhou, Y., Huang, Z., Tan, L., Ma, Y., Qiu, C., Zhang, F., Yuan, Y., Sun, C., Guo, L. (2014). Cone bit bearing seal failure analysis based on the finite element analysis. Engineering Failure Analysis, 45, 292–299. https://doi.org/10.1016/j.engfailanal.2014.07.007
Investigation of Energy Saving Rotary Shaft Seals by Finite Element Analysis
Year 2021,
Issue: 27, 325 - 333, 30.11.2021
Hasan Kasım
,
Barış Engin
İsmail Saraç
,
Murat Yazıcı
Abstract
In this study, radial force, number of contacting caterpillars, and contact surfaces of rubber material-based energy-saving rotary shaft seals (ERS), which are prototyped to be used in powertrains of new generation electric vehicles that can operate at high speeds and temperatures, were analyzed by experimental and finite element analysis (FEA) was studied. A 9% difference was found between the experimental test results for the radial force, which affects the endurance life of ESSs, and the FEA results. The data obtained from the rubber material tests were matched with the Abaqus system, and the Mooey-Rivlin material coefficient values were calculated. Thanks to the prepared FEA procedure, the movement of the sealing element during the assembly, reaction force, and other changes in the lip were easily observed. The number of lips in contact was the same in both studies, and a deviation of 2% was obtained between the contact surfaces. In this way, it has been seen that the design of sealing elements can be used as an alternative development method that saves time with finite element analysis without the need for prototypes, depending on the correct material definition.
References
- Johnston, D.E., Bond, R. (1984). A new concept in rotary shaft seal design suitable for truck and bus hub seal applications. SAE Technical Papers, 93(May), 1081–1091. https://doi.org/10.4271/841713
- Bien-aimé, L. K. M., Blaise, B. B., Beda, T. (2020). Characterization of hyperelastic deformation behavior of rubber-like materials. SN Applied Sciences, 2(4). https://doi.org/10.1007/s42452-020-2355-6
- Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759–764. https://doi.org/10.1007/s12541-012-0099-y
- Bhandari, A., Erdman, D., Bhatia, A., Strang, W. (2007). Finite Element Analysis and Material Modeling of Elastomeric Components and Assemblies: Some Practical Considerations. In SAE Technical Papers (Vol. 2007-January). SAE International. https://doi.org/10.4271/2007-26-041
- Li, W., Mays, S., & Lam, D. (2002). Material and finite element analysis of poly(tetrafluoroethylene) rotary seals. Plastics, Rubber and Composites, 31(8), 359–363. https://doi.org/10.1179/146580102225004974
- Zhang, F. Y., Chen, J. L., Li, T. T., Zhang, Y. F. (2019). Study and Optimization of Structural Parameters of Oil Seal by Response Surface Method. International Journal of Precision Engineering and Manufacturing, 20(2), 255–265.
https://doi.org/10.1007/s12541-019-00067-3
- Starostin, N.P., Vasileva, M.A. (2020). Determination of Load-Speed Modes for Fluoroplastic Seals of Rotary Shaft by Temperature Limitation. IOP Conference Series: Earth and Environmental Science, 459(6). https://doi.org/10.1088/1755-1315/459/6/062080
- Zhou, S. M., Chen, P., Shi, Y. (2015). Analysis on Sealing Performance for a New Type of Rubber Saddle-shaped Sealing Ring Based on AQAQUS. In Procedia Engineering (Vol. 130, pp. 1000–1009). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2015.12.252
- Calonius, O., Pietola, M. (2005). Explicit Finite Element Analysis of Tracking Capability of Rotary Face Seal for Industrial Fluid Power Applications. Proceedings of the JFPS International Symposium on Fluid Power, 2005(6), 328–333. https://doi.org/10.5739/isfp.2005.328
- Azura, A.R., Leow, S.L. (2019). Effect of carbon black loading on mechanical, conductivity and ageing properties of Natural Rubber composites. In Materials Today: Proceedings (Vol. 17, pp. 1056–1063). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2019.06.512
- Li, H., Zhao, T., Chen, M. (2016). Green tire and new type rubber materials. Kexue Tongbao/Chinese Science Bulletin, 61(31), 3297–3303. https://doi.org/10.1360/N972016-01118
- Vahapoğlu, V . (2013). Kauçuk Mekaniğinde Yapılan Deneyler . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 19 (1) , 33-60 . Retrieved from https://dergipark.org.tr/tr/pub/pajes/issue/20494/218212
- Keerthiwansa, R., Javorik, J., Kledrowetz, J., Nekoksa, P. (2018). Elastomer testing: The risk of using only uniaxial data for fitting the Mooney-Rivlin hyperelastic-material model. Materiali in Tehnologije, 52(1), 3–8.
https://doi.org/10.17222/mit.2017.085
- Dalrymple, T., Choi, J., Miller, K. (2007). Elastomer rate-dependence: a testing and material modelling methodology. Meeting of the Rubber Division of , (October 2007). Retrieved from http://www.axelproducts.com/downloads/Elastomer_Rate_Dependence_Paper.pdf
- Abdullah, M. A. (2020). Fundamental Considerations for Finite Element Modelling of Rubber Material Tensile Test. International Journal of Engineering and Management Sciences, 5(2), 7–13. https://doi.org/10.21791/ijems.2020.2.2.
- Sasso, M., Palmieri, G., Chiappini, G., Amodio, D. (2008). Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polymer Testing, 27(8), 995–1004. https://doi.org/10.1016/j.polymertesting.2008.09.001
- Freitas, T. R. (2009). Rubber sealing study applied to ball-bearing components using finite element method. In SAE Technical Papers. SAE International. https://doi.org/10.4271/2009-36-0034
- Erkek, M , Kaya, N , Güven, C . (2015). Kauçuk Burçların Hiperelastik Modellenmesi ve Sonlu Elemanlar Yöntemi ile Analizi . Uludağ University Journal of The Faculty of Engineering , 20 (1) , 65-74 . Retrieved from https://dergipark.org.tr/tr/pub/uumfd/issue/21692/233534
- Fujikawa, M., Maeda, N., Yamabe, J., Kodama, Y., Koishi, M. (2014). Determining Stress–Strain in Rubber with In-Plane Biaxial Tensile Tester. Experimental Mechanics, 54(9), 1639–1649. https://doi.org/10.1007/s11340-014-9942-7
- Kanzenbach, L., Schlomka, C., Gelke, S., & Ihlemann, J. (2019). Specimen design for extreme uniaxial tension-compression tests of rubber materials. PAMM, 19(1). https://doi.org/10.1002/pamm.201900371
- Huri, D., Mankovits, T. (2018). Comparison of the material models in rubber finite element analysis. In IOP Conference Series: Materials Science and Engineering (Vol. 393). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/393/1/012018
- Xu, D., Han, B. H., He, W. H., Cheng, Z. G. (2018). Research on compressive mechanical properties of metal rubber and its constitutive relation model. Journal of Vibroengineering, 20(1), 332–344. https://doi.org/10.21595/jve.2017.18235
- Ismail, R., Ibrahim, A., Rusop, M., Adnan, A. (2018). Determination of mechanical properties natural rubber compounds using double shear test pieces. International Journal of Civil Engineering and Technology, 9(8), 37–43.
- Soltani, A., Deng, A., Taheri, A., Mirzababaei, M., Nikraz, H. (2019). Interfacial shear strength of rubber-reinforced clays: A dimensional analysis perspective. Geosynthetics International, 26(2), 164–183. https://doi.org/10.1680/jgein.18.00045
- Yang, Y., Ren, Z. Y., Bai, H., Shen, D., Zhang, B. (2020). Study on the Mechanical Properties of Metal Rubber Inner Core of O-Type Seal with Large Ring-to-Diameter Ratio. Advances in Materials Science and Engineering, 2020.
https://doi.org/10.1155/2020/2875947
- Yakovlev, S.N. (2019). An Experimental Study of the Wear of the Radial Shaft Seals of Rotary Shafts. Journal of Machinery Manufacture and Reliability, 48(2), 179–183. https://doi.org/10.3103/S105261881902016X
- Kumar, N., Rao, V. V. (2016). Hyperelastic Mooney-Rivlin Model : Determination and Physical Interpretation of Material Constants. MIT International Journal of Mechanical Engineering, 6(1), 43–46.
- Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759–764. https://doi.org/10.1007/s12541-012-0099-y
- Engin, B., Saraç, Yazıcı, M. (2019). Finite element simulation of rotary shaft lip seals. Acta Physica Polonica A, 135(5), 1072–1074. https://doi.org/10.12693/APhysPolA.135.1072
- Zhou, Y., Huang, Z., Tan, L., Ma, Y., Qiu, C., Zhang, F., Yuan, Y., Sun, C., Guo, L. (2014). Cone bit bearing seal failure analysis based on the finite element analysis. Engineering Failure Analysis, 45, 292–299. https://doi.org/10.1016/j.engfailanal.2014.07.007