Research Article
BibTex RIS Cite

QCM Temelli Homosistein Nanobiyosensörünün Gerçek Zamanlı Tayin Sisteminde Optimizasyonu

Year 2021, Issue: 27, 1095 - 1104, 30.11.2021
https://doi.org/10.31590/ejosat.983841

Abstract

Metiyonin amino asitinden türeyen bir amino asit olan homosistein, damar hastalıkları için önemli bir risk faktörü olduğundan hızlı ve ucuz bir yöntemle tayini son yıllarda üzerinde çalışılan ve gittikçe artan öneme sahip bir araştırma konusudur. Sunulan bu araştırma kapsamında, Kuartz Kristal mikrobalans (QCM) yöntemi kullanılarak homosisteinin gerçek zamanlı tayini yapılmıştır. QCM tekniği özellikle nano düzeylerde bazı maddelerin varlığının nicel ve/veya nitel olarak tespitinde kullanılmaktadır. Kristalin elektrodunun yüzeyine özgül olarak immobilize edilen tanıyıcı maddenin hedef maddeyi yakaladığı mikrogravimetrik tayin prensibine dayanmaktadır. Yapılan çalışmada, kuartz kristal mikroterazi (QCM) tekniği ile homosisteinin sıvı ortamda ve sürekli akış sisteminde gerçek zamanlı bir yöntemle tayini mevcut yöntemlere göre daha hızlı olarak gerçekleştirilmiştir. Bu amaçla çalışmanın ilk aşamasında altın (Au) elektrotlu kristal yüzeylerinin modifikasyonu gerçekleştirilmiştir. Yüzey yıkama ve aktivasyon işleminden sonra yüzeye sisteamin ve daha bifonksiyonel bir yapıda olan glutaraldehid (GA) bağlanması gerçekleştirilmiştir. GA bağlanmış yüzeylere homosisteini özgül olarak tanıyan biyolojik ligand Bovin Serum Albumin (BSA) immobilize edilmiştir. En uygun BSA derişimi olarak 0,1 mg/ml seçilmiştir. Bu BSA yüzey derişimi ile yapılan homosistein bağlanma deneyleri ile 0,01-0,5 μM aralığında homosistein kalibrasyonu gerçekleştirilmiş ve en düşük tayin edilebilir değer olarak 0,01 μM yani 10 nM düzeyinde homosistein değeri belirlenmiştir. Böylece bu önerilen sistemle nanodüzeyde homosistein tayini yapılabilmiştir. Çalışmanın ikinci aşamasında gerçek zamanlı (real-time) homosistein ölçümleri ile yöntemin verimliliği, tekrarlanabilirliği ve tayin edilebilecek en düşük homosistein değerinin tespit edilmesi sağlanmıştır. Sonuçta damar hastalıklarının önemli bir belirteci olan homosisteinin tayininde geliştirilen sistemin yeni bir yöntem olarak kullanım potansiyeli olduğu düşünülmektedir.

Supporting Institution

TÜBİTAK

Project Number

108T642 nolu proje

Thanks

Bu çalışma TÜBİTAK tarafından 108T642 nolu proje ile maddi olarak desteklenmiştir.

References

  • Andersson, M., Andersson, J., Sellborn, A., Berglin, M., Nilsson, B., Elwing, H., Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces. Biosensors and Bioelectronics, 21, 79-86, (2005)
  • Ayhan, F., Kaya, G., Ayhan,H., Homosistein-BSA-afinite temelli biyosensor tasarımı. Türk Biyokimya Dergisi, 39(3):383–396, (2014).
  • Beitollahi, H., Zaimbashi, R., Mahani, M. T., Tajik, S., A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 134, 107497, (2020).
  • Bereli, N., Çimen, D., Hüseynli, S., Denizli, A., Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. Journal of Food Science, Vol. 85, Iss. 12, (2020).
  • Bunde, R.L., Jarvi, E.J., Rosentreter, J.J., Piezo electric quartz crystal biosensor, Talanta, 46, 1223-36, (1998).
  • Frantzen, F, Faaren, AL, Alfheim, I, Nordhei, AK, Enzyme conversion immunoassay for determining total homocysteine in plasma or serum, Clinical Chemistry, 44, 311-6, (1998).
  • Herne, T. M., Tarlov, M. J., Characterization of DNA Probes Immobilized on Gold Surfaces, Journal of American Chemical Society, 119, 8916-20, (1997).
  • Horst, D. J., Junior, P. P. de A., Duvoisin, C. A., Vieira, R. de A., Fabrication of Conductive Filaments for 3D-printing: Polymer Nanocomposites. 10, 6, , 6577 – 6586, (2020).
  • Hou K.C., Zaniewski R. and Roy S., Protein A immobilized affinity cartridge for immunoglobulin purification, Biotechnology and Applied Biochemistry, 13, 257-62, (1991).
  • Imai, K., Toyo’oka, T., Fluorometric Assay of Thiols with Fluorobenzoxadiazoles, Methods in Enzymology, 143, 67-75, (1987).
  • Jacobsen, D.W., Gatautis, V.J., Green R, Determination of Plasma Homocysteine by High-Performance Liquid Chromatography with Fluorescence Detection, Analytical Biochemistry, 178, 208-14, (1989).
  • Karamollaoğlu, İ., Öktem, H. A., Mutlu, M., QCM-based DNA biosensor for detection of genetically modified organisms (GMOs) Biochemical Engineering Journal 44, 142–150, (2009).
  • Karousos, N.G., Aouabdi, S., Way, A.S., Reddy SM, Quartz crystal microbalance determination of organophosphorus and carbamate pesticides, Analytica Chimica Acta, 469, 189–96, (2002).
  • Krijt, J., Vackova M, Kozıch, V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-buthylphosphine, Clinical Chemistry, 47, 10, 1821-8, (2001).
  • Laibinis, P. E., Whitesides, G. M., Allara, D. L., Tao, Y.-T., Parikh, A. N., Nuzzo, R. G., Monolayers of n- Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au, Journal of American Chemical Society, 113, 7152-7167, (1991).
  • Lee, Y.G., Chang, K.S., Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid, Talanta, 65, 1335-1342, (2005).
  • Likogianni, V., Janel, N., Ledru, A., Beaune, P., Thiol compounds metabolism in mice, rats and humans: Comparative study and potential explanation of rodents protection against vascular diseases, Clinical Chimica Acta, 372, 140-6, (2006).
  • Liu, Y., Yu, X., Zhao, R., Shangguan, D., Li, Y., Zuyi, B., Liu, G., Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal biosensor in solution, Biosensors and Bioelectronics, 18, 1419-1427, (2003, a).
  • Liu, Y., Yu, X., Zhao, R., Shangguan, D., Li, Y., Zuyi, B., Liu, G., Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents, Biosensors and Bioelectronics, 19, 9-19, (2003, b).
  • Liu, Y., Zhang, W, Yu, X., Zhang, H., Zhao, R., Shangguan, D., Li, Y., Shen, B., Liu, G., Quartz crystal biosensor for real-time kinetic analysis of interaction between human TNF- and monoclonal antibodies, Sensors and Actuators: B, 99, 416–24, (2004).
  • Liu, Y.C, Wang, C.M., Hsiung, K.P., Comparison of Different Protein Immobilization Methods on Quartz Crystal Microbalance Surface in flow Injection Immunoassay, Analytical Biochemistry, 299, 130-5, (2001).
  • Marx, K. A., Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface, Biomacromolecules, 4 (5), 1099 -1120, (2003).
  • Matthews, O.A., Shipway, A. N., Stoddart, J.F., Dendrimers—Branching out from curiosities into new Technologies, Progress in Polymer Science, 23, 1-56, (1998).
  • Ozalp, V. C., Bayramoglu, G., Erdem, Z., Arica, M. Y., Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Analytica Chimica Acta 853 533–540, (2015).
  • Refsum, H., Ueland, M., Svardal. A.M., Fully Automated Fluorescence Assay for Determining Total Homocysteine in Plasma, Clinical Chemistry, 35(9), 1921-7, (1989).
  • Sauerbrey, G.A., Use a quartz vibrator form weight thin films on a microbalance, Z. Phys., 155, 206-210, (1959).
  • Shende, P., Kasture, P., Dendrimeric biosensor for detection of E. coli O157:H7 in diet. Biointerface Research in Applied Chemistry. 10, 2, , 5128 – 5131, (2020).
  • Tanaka, M., Mochizuki, A., Motomura, T., Shimura K, Onishi M, Okahata Y, In situ studies on protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 193, 145–152, (2001).
  • Ubbink, J.B., Assay Methods for the Measurement of Total Homocyst(e)ine in Plasma. Seminars in Thrombasis and Hemostatis, 26 (3), 233-41, (2000).
  • Ueland, P.M., Refsum, H., Stabler, S.P., Malinow MR, Andersson A, Allen RH. Total Homocysteine in Plasma or Serum: Methods and Clinical Applications (Review), Clinical Chemistry, 39, 1764-79, (1993).
  • Vester, B., Rasmussen, K., High Performance Liquid Chromatography Method for Rapid and Accurate Determination of Homocysteine in Plasma and Serum, European Journal of Clinical Chemistry and Clinical Biochemistry, 29, 549-54, (1991).
  • Xie, Q.; Xiang, C.; Yuan, Y.; Zhang, Y.; Nie, L. and Yao, S.; A novel dual-impedance-analysis EQCM system—investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces. Journal of Colloid and Interface Science 262, 107–115, (2003).
  • Yılmaz, M., Bakhshpour, M., Göktürk I.,, Kevser Piskin A,. Denizli, A., Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. Chemosensors, 9, 80, (2021).
  • Zhang, H., Zhao, Rui., Chen, Z., Shangguan, D., Liu, G., QCM–FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III, Biosensors and Bioelectronics 21, 121-127, (2004).
  • Zhang, Q., Huang, Y., Zhao, R., Liu, G., Chen, Y., Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosensors and Bioelectronics 24, 48–54, (2008).

Optimization of QCM-Based Homocysteine Nanobiosensor in Real-Time Detection System

Year 2021, Issue: 27, 1095 - 1104, 30.11.2021
https://doi.org/10.31590/ejosat.983841

Abstract

Homocysteine, which is a methionine amino acid derived amino acid is an important risk factor for vascular deseases so, its dedection by a rapid and cheap method is under investigation and is an research theme with gradually increasing importance. In the scope of the presented study, the real time detection of homocysteine by using Quartz Crystal Microbalance (QCM) method was performed. QCM technique is used for quantitative and/or qualitative determination of some materials especially which are present in nanoscale levels. The analysis lies on the microgravimetric analysis where the specific compound attached to the surface of crystal capture the target compound. The detection of homocysteine with QCM technique in liquid and continuous flow system was achieved in a real time method faster than other available methods. For the purpose, the modification of gold (Au) crystal surfaces was performed in the first part of the study. Cystamine was immobilized after surface washing and activation process and then binding of bifunctional glutaraldehyde (GA) was achieved. Homocysteine specific recognizing biological ligand Bovine Serum Albumin (BSA) was immobilized to glutaraldehyde coupled surfaces. The most convinient BSA concentration was selected as 0,1 mg/ml. and homocysteine coupling values was determined and the calibration of homocystein was achieved. Homocysteine calibration curve was realized by homocysteine coupling experiments with this BSA surface concentration and the minimum detection limit was found as 0,01 µM which coincide to 10 nM homocysteine value. Hence, homocysteine was detected in nano level in the proposed system. In the second part of the research, productivity, reproducibility, and minimum detection limit of the method was determined by the experiments of real-time detection of homocystein. Thus, it is thought that the system developed for the determination of homocysteine, which is an important marker of vascular diseases, has the potential to be used as a new method.

Project Number

108T642 nolu proje

References

  • Andersson, M., Andersson, J., Sellborn, A., Berglin, M., Nilsson, B., Elwing, H., Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces. Biosensors and Bioelectronics, 21, 79-86, (2005)
  • Ayhan, F., Kaya, G., Ayhan,H., Homosistein-BSA-afinite temelli biyosensor tasarımı. Türk Biyokimya Dergisi, 39(3):383–396, (2014).
  • Beitollahi, H., Zaimbashi, R., Mahani, M. T., Tajik, S., A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 134, 107497, (2020).
  • Bereli, N., Çimen, D., Hüseynli, S., Denizli, A., Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. Journal of Food Science, Vol. 85, Iss. 12, (2020).
  • Bunde, R.L., Jarvi, E.J., Rosentreter, J.J., Piezo electric quartz crystal biosensor, Talanta, 46, 1223-36, (1998).
  • Frantzen, F, Faaren, AL, Alfheim, I, Nordhei, AK, Enzyme conversion immunoassay for determining total homocysteine in plasma or serum, Clinical Chemistry, 44, 311-6, (1998).
  • Herne, T. M., Tarlov, M. J., Characterization of DNA Probes Immobilized on Gold Surfaces, Journal of American Chemical Society, 119, 8916-20, (1997).
  • Horst, D. J., Junior, P. P. de A., Duvoisin, C. A., Vieira, R. de A., Fabrication of Conductive Filaments for 3D-printing: Polymer Nanocomposites. 10, 6, , 6577 – 6586, (2020).
  • Hou K.C., Zaniewski R. and Roy S., Protein A immobilized affinity cartridge for immunoglobulin purification, Biotechnology and Applied Biochemistry, 13, 257-62, (1991).
  • Imai, K., Toyo’oka, T., Fluorometric Assay of Thiols with Fluorobenzoxadiazoles, Methods in Enzymology, 143, 67-75, (1987).
  • Jacobsen, D.W., Gatautis, V.J., Green R, Determination of Plasma Homocysteine by High-Performance Liquid Chromatography with Fluorescence Detection, Analytical Biochemistry, 178, 208-14, (1989).
  • Karamollaoğlu, İ., Öktem, H. A., Mutlu, M., QCM-based DNA biosensor for detection of genetically modified organisms (GMOs) Biochemical Engineering Journal 44, 142–150, (2009).
  • Karousos, N.G., Aouabdi, S., Way, A.S., Reddy SM, Quartz crystal microbalance determination of organophosphorus and carbamate pesticides, Analytica Chimica Acta, 469, 189–96, (2002).
  • Krijt, J., Vackova M, Kozıch, V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-buthylphosphine, Clinical Chemistry, 47, 10, 1821-8, (2001).
  • Laibinis, P. E., Whitesides, G. M., Allara, D. L., Tao, Y.-T., Parikh, A. N., Nuzzo, R. G., Monolayers of n- Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au, Journal of American Chemical Society, 113, 7152-7167, (1991).
  • Lee, Y.G., Chang, K.S., Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid, Talanta, 65, 1335-1342, (2005).
  • Likogianni, V., Janel, N., Ledru, A., Beaune, P., Thiol compounds metabolism in mice, rats and humans: Comparative study and potential explanation of rodents protection against vascular diseases, Clinical Chimica Acta, 372, 140-6, (2006).
  • Liu, Y., Yu, X., Zhao, R., Shangguan, D., Li, Y., Zuyi, B., Liu, G., Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal biosensor in solution, Biosensors and Bioelectronics, 18, 1419-1427, (2003, a).
  • Liu, Y., Yu, X., Zhao, R., Shangguan, D., Li, Y., Zuyi, B., Liu, G., Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents, Biosensors and Bioelectronics, 19, 9-19, (2003, b).
  • Liu, Y., Zhang, W, Yu, X., Zhang, H., Zhao, R., Shangguan, D., Li, Y., Shen, B., Liu, G., Quartz crystal biosensor for real-time kinetic analysis of interaction between human TNF- and monoclonal antibodies, Sensors and Actuators: B, 99, 416–24, (2004).
  • Liu, Y.C, Wang, C.M., Hsiung, K.P., Comparison of Different Protein Immobilization Methods on Quartz Crystal Microbalance Surface in flow Injection Immunoassay, Analytical Biochemistry, 299, 130-5, (2001).
  • Marx, K. A., Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface, Biomacromolecules, 4 (5), 1099 -1120, (2003).
  • Matthews, O.A., Shipway, A. N., Stoddart, J.F., Dendrimers—Branching out from curiosities into new Technologies, Progress in Polymer Science, 23, 1-56, (1998).
  • Ozalp, V. C., Bayramoglu, G., Erdem, Z., Arica, M. Y., Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Analytica Chimica Acta 853 533–540, (2015).
  • Refsum, H., Ueland, M., Svardal. A.M., Fully Automated Fluorescence Assay for Determining Total Homocysteine in Plasma, Clinical Chemistry, 35(9), 1921-7, (1989).
  • Sauerbrey, G.A., Use a quartz vibrator form weight thin films on a microbalance, Z. Phys., 155, 206-210, (1959).
  • Shende, P., Kasture, P., Dendrimeric biosensor for detection of E. coli O157:H7 in diet. Biointerface Research in Applied Chemistry. 10, 2, , 5128 – 5131, (2020).
  • Tanaka, M., Mochizuki, A., Motomura, T., Shimura K, Onishi M, Okahata Y, In situ studies on protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 193, 145–152, (2001).
  • Ubbink, J.B., Assay Methods for the Measurement of Total Homocyst(e)ine in Plasma. Seminars in Thrombasis and Hemostatis, 26 (3), 233-41, (2000).
  • Ueland, P.M., Refsum, H., Stabler, S.P., Malinow MR, Andersson A, Allen RH. Total Homocysteine in Plasma or Serum: Methods and Clinical Applications (Review), Clinical Chemistry, 39, 1764-79, (1993).
  • Vester, B., Rasmussen, K., High Performance Liquid Chromatography Method for Rapid and Accurate Determination of Homocysteine in Plasma and Serum, European Journal of Clinical Chemistry and Clinical Biochemistry, 29, 549-54, (1991).
  • Xie, Q.; Xiang, C.; Yuan, Y.; Zhang, Y.; Nie, L. and Yao, S.; A novel dual-impedance-analysis EQCM system—investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces. Journal of Colloid and Interface Science 262, 107–115, (2003).
  • Yılmaz, M., Bakhshpour, M., Göktürk I.,, Kevser Piskin A,. Denizli, A., Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. Chemosensors, 9, 80, (2021).
  • Zhang, H., Zhao, Rui., Chen, Z., Shangguan, D., Liu, G., QCM–FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III, Biosensors and Bioelectronics 21, 121-127, (2004).
  • Zhang, Q., Huang, Y., Zhao, R., Liu, G., Chen, Y., Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosensors and Bioelectronics 24, 48–54, (2008).
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatma Ayhan 0000-0003-2220-4496

Project Number 108T642 nolu proje
Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA Ayhan, F. (2021). QCM Temelli Homosistein Nanobiyosensörünün Gerçek Zamanlı Tayin Sisteminde Optimizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(27), 1095-1104. https://doi.org/10.31590/ejosat.983841