Review
BibTex RIS Cite

Kısmi Gölgelenme Şartları Altındaki Kompleks Yapılı Fotovoltaik Enerji Sistemlerinde Maksimum Güç Noktası Takibinin Metasezgisel Algoritmalar Kullanılarak İncelenmesi

Year 2021, Issue: 31, 157 - 164, 31.12.2021
https://doi.org/10.31590/ejosat.1006248

Abstract

Fotovoltaik (PV) enerji sistemlerinde verimliliği arttırabilmek amacıyla güç elektroniği çeviricileri kullanılmakta ve maksimum güç noktası takibi yapılmaktadır. Geleneksel algoritmalar maksimum güç noktası takibi yapılırken, eşit dağılımlı ışıma ve sıcaklık şartları altında oldukça verimli bir şekilde çalışmaktadır. Ancak kısmi gölgelenme şartları meydana geldiğinde, geleneksel takip yöntemleri global maksimum güç noktasını izleyememekte ve yerel maksimum güç noktalarına yakalanmaktadır. Buna karşılık doğadan ilham alınarak oluşturulan metasezgisel algoritmalar global maksimum güç noktasının takip edilmesinde daha başarılı olmaktadırlar. Bu çalışmada kompleks yapıya sahip PV enerji sistemlerinde, maksimum güç noktasının takibinde kullanılan çalışmalar hakkında detaylı bilgiler verilmiştir. Kısmi gölgelenme şartları altındaki PV enerji sistemlerinde, sıcaklık ve ışınım miktarının sistem üzerindeki etkisinden bahsedilmiştir. Çalışmada maksimum güç noktası takip yöntemleri hakkında bilgiler verilmekte olup, geleneksel ve metasezgisel yöntemlerin uygulanan kriterler bakımından birbirleri ile karşılaştırmalı analizi verilmiştir. PV enerji sistemlerinde kullanılan metasezgisel algoritmalardan biri olan Parçacık Sürü Optimizasyon (PSO) algoritmasıyla ile ilgili çalışmalar incelenmiştir. Günümüzde maksimum güç noktası takip yöntemleri arasında sıklıkla kullanılan ve popüler bir algoritma olan PSO algoritması ile, sistemin maksimum güç noktası takibi yüksek doğruluk oranında izlenebilmektedir.

References

  • Abo-Elyousr, F.K., Abdelshaf, M. & Abdelaziz, A.Y. (2018). MPPT-based particle swarm and cuckoo search algorithms for PV systems. Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, 379-400.
  • Ahmed, J. & Salam, Z. (2013). A soft computing MPPT for PV system based on cuckoo search algorithm. 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, 558-562.
  • Anoop, K. & Nandakumar, M. (2018). A novel maximum power point tracking method based on particle swarm optimization combined with one cycle control. International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, 1-6.
  • Aygül, K., Cikan, M., Demirdelen, T. & Tumay, M. (2019). Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition. Energy Sources Part a Recovery Utilization and Environmental Effects, https://doi.org/10.1080/15567036. 2019.1677818
  • Azab, M. (2010). Optimal power point tracking for stand-alone PV system using particle swarm optimization. 2010 IEEE International Symposium on Industrial Electronics, Bari, 969-973.
  • Azharuddin, M. (2012). Effects of shading on the power of photovoltaic arrays. Purdue University, Yüksek Lisans Tezi.
  • Behera, T.K., Behera, M.K. & Nayak, N. (2018). Spider monkey based ımprove P&O MPPT controller for photovoltaic generation system. 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, 1-6.
  • Benyoucef, A.S, Chouder, A., Kara, K., Silvestre, S. & Sahed, O.A. (2015). Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. ELSEVIER, 38-48.
  • Bholane, R.R. & Babu P.S., (2018). Grid connected PV System using FB-PSO. International Conference on Smart Electric Drives & Power System (ICSEDPS), doi:10.1109/ICSEDPS. 2018.8536065.
  • Charin, C., Ishak, D., Zainuri, M.A.A.M., Ismail, B. & Jamil, M.K.M. (2021). A hybrid of bio-inspired algorithm based on levy flight and particle swarm optimizations for photovoltaic system under partial shading conditions. Solar Energy, 1-14.
  • Çetinbaş, I., Tamyürek, B. & Demirtaş, M. (2019). Energy management of a PV energy system and a plugged-in electric vehicle based micro-grid designed for residential applications. 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 991-996.
  • Çetinbaş, I., Tamyürek, B., Demirtaş, M. (2019). Design, analysis, and optimization of a hybrid microgrid system using HOMER software: Eskişehir Osmangazi University Example. Int. Journal of Renewable Energy Development, 8(1): 65-79.
  • Dhivya, P. & Kumar, K.R. (2017). MPPT based control of sepic converter using firefly algorithm for solar PV system under partial shaded conditions. International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, 1-8.
  • Esram, T. & Chapman, P.L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 439–449.
  • Fang, G.J. & Lian, K.L. (2017). A maximum power point tracking method based on multiple perturb-and-observe method for overcoming solar partial shaded problems. 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, 68-73.
  • Gümüş, Z. & Demirtaş, M. (2021). Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması. Politeknik Dergisi, 24(3): 853 – 865.
  • Kaced, K., Larbes, C., Ramzan, N., Bounabi, M. & Dahmane, Z.E. (2017). Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Solar Energy, 490-503.
  • Kandemir, E. (2020). Kısmi gölgelenme koşullarında maksimum güç noktasında çalışan enerji geri kazanımlı tek dönüştürücülü şebeke bağlantılı PV sistem tasarımı ve uygulaması. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, İzmir, 1-2-10-47.
  • Karaboğa, D. (2011). Yapay zekâ optimizasyon algoritmaları. Nobel Yayınları, ISBN 978-605-395-434-7, 18.
  • Karagöz, M.K. (2020). FV sistemler için kısmi gölge koşullarını yönetebilen yarasa algoritması tabanlı maksimum güç noktası izleyici tasarımı ve gerçekleştirilmesi. Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü, Doktora Tezi, Karabük, 2.
  • Karakaya, H.B. (2021). Fotovoltaik sistemlerde maksimum güç noktasının takibi için kullanılan optimizasyon algoritmalarının performansının değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Kahramanmaraş, 21.
  • Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization. IEEE International Conferenceon Neural Networks, Perth, Australia, IEEE Servive Center, Piscataway, NJ, 1942-1948.
  • Liu, G., Zhu, J., Tao, H., Wang, W. & Blaabjerg, F. (2019). A MPPT algorithm based on PSO for PV array under partially shaded condition. 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 1-5.
  • Manickam, C., Raman, G.R., Raman, G.P., Ganesan, S.I. & Nagamani, C. (2016). A hybrid algorithm for tracking of gmpp based on P&O and PSO with reduced power oscillation in string inverters. IEEE Transactions on Industrial Eelctronics, 63: 6097-6106.
  • Miyateke, M., Verachary, M., Toriumi, F., Fujii, N. & Ko, H. (2011). Maximum power point tracking of multiple photovoltaic arrays: A PSO Approach. IEEE Transactions on Aerospace and Electronic Systems, 47 (1): 367-380.
  • Motamarri, R. & Nagu, B. (2020). GMPPT by using PSO based on levy flight for photovoltaic system under partial shading conditions. IET Renewable Power Generation, 1143-1155.
  • Nugraha, D.A., Lian K.L. & Suwarno (2019). A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded pv system. Canadian Journal of Electrical and Computer Engineering, 42:173-182.
  • Safari, A. & Mekhilef, S. (2011). Simulation and hardware ımplementation of ıncremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron, 1154–1161.
  • Sagonda, A.F. & Folly, K.A. (2019). Maximum power point tracking in solar PV under partial shading conditions using stochastic optimization techniques. IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 1967-1974.
  • Santos, J.L., Antunes, F., Chehab, A. & Cruz, C. (2006). A maximum power point tracker for FV systems using a high performance boost converter. Solar Energy, 772-778.
  • Shaiek, Y., Ben Smida, M., Sakly, A. & Mimouni, M.F. (2013). Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Solar Energy, 107-122.
  • Sun, Y., Lou, Z., Xi, Z., Bao, Z., Li, X. & Yan, W. (2018). Composite MPPT control algorithm with partial shading on PV arrays. IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 898-902.
  • Suryavanshi, R., Joshi, D.R. & Jangamshetti, S.H. (2012). PSO and P&O based MPPT technique for spv panel under varying atmospheric conditions. International Conference on Power, Signals, Controls and Computation, Kerala, 1-6.
  • Teo, K.T.K., Lim, P.Y., Chua, B.L., Goh, H.H. & Tan, M.K. (2014). Maximum power point tracking of partially shaded photovoltaic arrays using particle swarm optimization. 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, Kota Kinabalu, 247-252.
  • Ünlü, M. (2015). Fotovoltaik sistemler için parçalı gölgelenme durumlarında maksimum güç noktası izleyebilen şebeke bağlantılı yeni bir evirici tasarımı ve uygulaması. Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Kocaeli, 1.

Investigation of Maximum Power Point Tracking in Complex Photovoltaic Energy Systems Under Partial Shading Conditions Using Metaheuristic Algorithms

Year 2021, Issue: 31, 157 - 164, 31.12.2021
https://doi.org/10.31590/ejosat.1006248

Abstract

In order to increase efficiency in photovoltaic (PV) energy systems, power electronic converters are used and maximum power point tracking is performed. Conventional algorithms work very efficiently under evenly distributed radiation and temperature conditions while tracking the maximum power point. However, when partial shading conditions occur, traditional tracking methods cannot follow the global maximum power point and are caught in the local maximum power points. On the other hand, metaheuristic algorithms inspired by nature are more successful in tracking the global maximum power point. In this study, detailed information is given about the studies used in the follow-up of the maximum power point in PV energy systems with complex structure. In PV energy systems under partial shading conditions, the effect of temperature and radiation amount on the system is mentioned. In the study, information about maximum power point tracking methods is given, and a comparative analysis of traditional and metaheuristic methods with each other in terms of applied criteria is given. Studies on the Particle Swarm Optimization (PSO) algorithm, which is one of the metaheuristic algorithms used in PV energy systems, are examined. With the PSO algorithm, which is a popular and frequently used algorithm among the maximum power point tracking methods today, the maximum power point tracking of the system can be monitored with high accuracy.

References

  • Abo-Elyousr, F.K., Abdelshaf, M. & Abdelaziz, A.Y. (2018). MPPT-based particle swarm and cuckoo search algorithms for PV systems. Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, 379-400.
  • Ahmed, J. & Salam, Z. (2013). A soft computing MPPT for PV system based on cuckoo search algorithm. 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, 558-562.
  • Anoop, K. & Nandakumar, M. (2018). A novel maximum power point tracking method based on particle swarm optimization combined with one cycle control. International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, 1-6.
  • Aygül, K., Cikan, M., Demirdelen, T. & Tumay, M. (2019). Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition. Energy Sources Part a Recovery Utilization and Environmental Effects, https://doi.org/10.1080/15567036. 2019.1677818
  • Azab, M. (2010). Optimal power point tracking for stand-alone PV system using particle swarm optimization. 2010 IEEE International Symposium on Industrial Electronics, Bari, 969-973.
  • Azharuddin, M. (2012). Effects of shading on the power of photovoltaic arrays. Purdue University, Yüksek Lisans Tezi.
  • Behera, T.K., Behera, M.K. & Nayak, N. (2018). Spider monkey based ımprove P&O MPPT controller for photovoltaic generation system. 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, 1-6.
  • Benyoucef, A.S, Chouder, A., Kara, K., Silvestre, S. & Sahed, O.A. (2015). Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. ELSEVIER, 38-48.
  • Bholane, R.R. & Babu P.S., (2018). Grid connected PV System using FB-PSO. International Conference on Smart Electric Drives & Power System (ICSEDPS), doi:10.1109/ICSEDPS. 2018.8536065.
  • Charin, C., Ishak, D., Zainuri, M.A.A.M., Ismail, B. & Jamil, M.K.M. (2021). A hybrid of bio-inspired algorithm based on levy flight and particle swarm optimizations for photovoltaic system under partial shading conditions. Solar Energy, 1-14.
  • Çetinbaş, I., Tamyürek, B. & Demirtaş, M. (2019). Energy management of a PV energy system and a plugged-in electric vehicle based micro-grid designed for residential applications. 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 991-996.
  • Çetinbaş, I., Tamyürek, B., Demirtaş, M. (2019). Design, analysis, and optimization of a hybrid microgrid system using HOMER software: Eskişehir Osmangazi University Example. Int. Journal of Renewable Energy Development, 8(1): 65-79.
  • Dhivya, P. & Kumar, K.R. (2017). MPPT based control of sepic converter using firefly algorithm for solar PV system under partial shaded conditions. International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, 1-8.
  • Esram, T. & Chapman, P.L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 439–449.
  • Fang, G.J. & Lian, K.L. (2017). A maximum power point tracking method based on multiple perturb-and-observe method for overcoming solar partial shaded problems. 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, 68-73.
  • Gümüş, Z. & Demirtaş, M. (2021). Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması. Politeknik Dergisi, 24(3): 853 – 865.
  • Kaced, K., Larbes, C., Ramzan, N., Bounabi, M. & Dahmane, Z.E. (2017). Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Solar Energy, 490-503.
  • Kandemir, E. (2020). Kısmi gölgelenme koşullarında maksimum güç noktasında çalışan enerji geri kazanımlı tek dönüştürücülü şebeke bağlantılı PV sistem tasarımı ve uygulaması. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, İzmir, 1-2-10-47.
  • Karaboğa, D. (2011). Yapay zekâ optimizasyon algoritmaları. Nobel Yayınları, ISBN 978-605-395-434-7, 18.
  • Karagöz, M.K. (2020). FV sistemler için kısmi gölge koşullarını yönetebilen yarasa algoritması tabanlı maksimum güç noktası izleyici tasarımı ve gerçekleştirilmesi. Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü, Doktora Tezi, Karabük, 2.
  • Karakaya, H.B. (2021). Fotovoltaik sistemlerde maksimum güç noktasının takibi için kullanılan optimizasyon algoritmalarının performansının değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Kahramanmaraş, 21.
  • Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization. IEEE International Conferenceon Neural Networks, Perth, Australia, IEEE Servive Center, Piscataway, NJ, 1942-1948.
  • Liu, G., Zhu, J., Tao, H., Wang, W. & Blaabjerg, F. (2019). A MPPT algorithm based on PSO for PV array under partially shaded condition. 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 1-5.
  • Manickam, C., Raman, G.R., Raman, G.P., Ganesan, S.I. & Nagamani, C. (2016). A hybrid algorithm for tracking of gmpp based on P&O and PSO with reduced power oscillation in string inverters. IEEE Transactions on Industrial Eelctronics, 63: 6097-6106.
  • Miyateke, M., Verachary, M., Toriumi, F., Fujii, N. & Ko, H. (2011). Maximum power point tracking of multiple photovoltaic arrays: A PSO Approach. IEEE Transactions on Aerospace and Electronic Systems, 47 (1): 367-380.
  • Motamarri, R. & Nagu, B. (2020). GMPPT by using PSO based on levy flight for photovoltaic system under partial shading conditions. IET Renewable Power Generation, 1143-1155.
  • Nugraha, D.A., Lian K.L. & Suwarno (2019). A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded pv system. Canadian Journal of Electrical and Computer Engineering, 42:173-182.
  • Safari, A. & Mekhilef, S. (2011). Simulation and hardware ımplementation of ıncremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron, 1154–1161.
  • Sagonda, A.F. & Folly, K.A. (2019). Maximum power point tracking in solar PV under partial shading conditions using stochastic optimization techniques. IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 1967-1974.
  • Santos, J.L., Antunes, F., Chehab, A. & Cruz, C. (2006). A maximum power point tracker for FV systems using a high performance boost converter. Solar Energy, 772-778.
  • Shaiek, Y., Ben Smida, M., Sakly, A. & Mimouni, M.F. (2013). Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Solar Energy, 107-122.
  • Sun, Y., Lou, Z., Xi, Z., Bao, Z., Li, X. & Yan, W. (2018). Composite MPPT control algorithm with partial shading on PV arrays. IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 898-902.
  • Suryavanshi, R., Joshi, D.R. & Jangamshetti, S.H. (2012). PSO and P&O based MPPT technique for spv panel under varying atmospheric conditions. International Conference on Power, Signals, Controls and Computation, Kerala, 1-6.
  • Teo, K.T.K., Lim, P.Y., Chua, B.L., Goh, H.H. & Tan, M.K. (2014). Maximum power point tracking of partially shaded photovoltaic arrays using particle swarm optimization. 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, Kota Kinabalu, 247-252.
  • Ünlü, M. (2015). Fotovoltaik sistemler için parçalı gölgelenme durumlarında maksimum güç noktası izleyebilen şebeke bağlantılı yeni bir evirici tasarımı ve uygulaması. Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Kocaeli, 1.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ayşenur Özdemir 0000-0002-9614-1603

Nihat Pamuk 0000-0001-8980-6913

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Özdemir, A., & Pamuk, N. (2021). Kısmi Gölgelenme Şartları Altındaki Kompleks Yapılı Fotovoltaik Enerji Sistemlerinde Maksimum Güç Noktası Takibinin Metasezgisel Algoritmalar Kullanılarak İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(31), 157-164. https://doi.org/10.31590/ejosat.1006248