Research Article
BibTex RIS Cite

İnsansız Su Altı Araçlarında Kullanılan İtici Motorların İtki Kuvveti Hesaplanmasında Uygulanan Analiz Yöntemlerinin Karşılaştırılması

Year 2021, Issue: 31, 791 - 795, 31.12.2021
https://doi.org/10.31590/ejosat.1008881

Abstract

Su altı araçları pek çok uygulama alanında aktif bir şekilde kullanılmaktadır. Uzaktan kontrol edilebilen insansız su altı araçlarının yanı sıra otonom bir şekilde çalışma kapasitesine sahip araçlarda bulunmaktadır. İnsansız su altı araçları; arama – kurtarma, su altı keşif ve gözlem, askeri amaçlı uygulamalar gibi alanlarda görev almaktadır. Su altı araçlarında bulunan başlıca kısımlar ise iskelet gövde, itici motorlar, sızdırmalığı sağlanmış bölme, batarya veya güç kaynağıdır. İtici motorlar aracın hareket kabiliyetini doğrudan etkileyerek önemli parametrelere yön verir. İtici motor dizilimleri sonucu serbestlik derecesi değişebilirken, itki kuvveti, aracın ulaşabileceği maksimum hız gibi parametrelerde de belirleyici rol oynar. Bu çalışmada; su altı araçlarında kullanılan itici motorların bilgisayar destekli analiz programında itki kuvveti hesabında kullanılabilecek iki yöntem üzerinde durulmuştur. İki durum birbirinden bağımsız bir biçimde analiz edilmiş, oluşan itki kuvveti değerleri hesaplatılmıştır. Hesaplamalı akışkanlar dinamiği analizleri sonucu oluşan iki durumdaki itki kuvveti değerleri birbirleri ile karşılaştırılmıştır. Her iki yöntem sonucunun da %1’den az bir fark ile neredeyse aynı sonuçları verdiği görülmüştür. Çalışma sırasında kullanılan itici motorların pervane ve nozzle kısımları özgün tasarım olup 3D yazıcıdan üretilmiştir. Üretimi tamamlanan iticiler, çalışmalarda kullanılması için tasarlanan su altı aracına entegre edilmiştir. Yapılan çalışma sonucu itici motorlada oluşan itki kuvvetinin hesabında iki yönteminde kullanılabileceği, hangi yöntem kullanılmış olursa olsun bulunan değerin diğer yöntem ile hesaplanacak olan değere çok yakın veya aynı olacağına ulaşılmıştır.

References

  • Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
  • Boehm, J., Berkenpas, E., Henning, B., Rodriguez, M., Shepard, C., & Turchik, A. (2018). Characterization, modeling, and simulation of an ROV thruster using a six degree-of-freedom load cell. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
  • Budiyono, A. (2009). Advances in unmanned underwater vehicles technologies: Modeling, control and guidance perspectives.
  • Chin, C. S., Lau, M. W. S., Low, E., & Seet, G. G. L. (2006). Design of thrusters configuration and thrust allocation control for a remotely operated vehicle. Paper presented at the 2006 IEEE Conference on Robotics, Automation and Mechatronics.
  • Christ, R. D., & Wernli Sr, R. L. (2013). The ROV manual: a user guide for remotely operated vehicles: Butterworth-Heinemann.
  • Gülgün, T., Alankaya, G., Duran, M. E., Erdoğdu, M., DURDU, A., YALÇINKAYA, İ. s., & Terzioğlu, H. (2020). Analysis of the Effect on the Thrust Force as a Result of Positioning Thrusters at Different Angles in Underwater Vehicles in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi, 357-362.
  • Gülgün, T., Alankaya, G., Duran, M. E., Erdoğdu, M., Yalçinkaya, İ., Durdu, A., & Terzioğlu, H. (2020). Low-Cost Unmanned Underwater Vehicle Design. Avrupa Bilim ve Teknoloji Dergisi, 363-367.
  • Healey, A. J., Rock, S., Cody, S., Miles, D., & Brown, J. (1995). Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE Journal of Oceanic Engineering, 20(4), 354-361.
  • Ludvigsen, M., Aasly, K., Ellefmo, S., Zylstra, M., & Pardey, M. (2017). ROV based drilling for deep sea mining exploration. Paper presented at the OCEANS 2017-Aberdeen.
  • Muljowidodo, K., Adi N, S., Prayogo, N., & Budiyono, A. (2009). Design and testing of underwater thruster for SHRIMP ROV-ITB.
  • Negahdaripour, S., & Firoozfam, P. (2006). An ROV stereovision system for ship-hull inspection. IEEE Journal of Oceanic Engineering, 31(3), 551-564.
  • Nian, R., He, B., Yu, J., Bao, Z., & Wang, Y. (2013). ROV-based underwater vision system for intelligent fish ethology research. International Journal of Advanced Robotic Systems, 10(9), 326.
  • Tangorra, J. L., Davidson, S. N., Hunter, I. W., Madden, P. G., Lauder, G. V., Dong, H., . . . Mittal, R. (2007). The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 32(3), 533-550.
  • Yoerger, D. R., Cooke, J. G., & Slotine, J.-J. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178.

Comparison of the Analysis Methods Applied in Calculating the Thrust Force of the Thrusters Used in Unmanned Underwater Vehicles

Year 2021, Issue: 31, 791 - 795, 31.12.2021
https://doi.org/10.31590/ejosat.1008881

Abstract

Underwater vehicles are actively used in many application areas. It is available in unmanned underwater vehicles that can be controlled remotely, as well as vehicles capable of operating autonomously. Unmanned underwater vehicles; It is involved in areas such as search and rescue, underwater reconnaissance and observation, military applications. The main parts found in underwater vehicles are the frame body, thrusters, sealed compartment, battery, or power source. Thrusters directly affect the mobility of the vehicle and give direction to important parameters. While the degree of freedom may vary as a result of thrust arrays, the thrust force also plays a decisive role in parameters such as the maximum speed that the vehicle can reach. In this study, two methods that can be used in the calculation of thrust force in the computer-aided analysis program of thrusters used in underwater vehicles are emphasized. The two situations were analyzed independently of each other and the resulting thrust force values were calculated. The thrust force values in the two cases, which were formed as a result of computational fluid dynamics analysis, were compared with each other. It was found that the results of both methods gave almost the same results with a difference of less than 1%. The propeller and nozzle parts of the thrusters used during the study are original designs and produced from a 3D printer. The thrusters, whose production has been completed, are integrated into the underwater vehicle designed for use in studies. As a result of the study, it was found that the thrust force generated in the thrusters can be used in two methods of calculation, regardless of which method is used, the value found will be very close or the same as the value to be calculated by the other method.

References

  • Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
  • Boehm, J., Berkenpas, E., Henning, B., Rodriguez, M., Shepard, C., & Turchik, A. (2018). Characterization, modeling, and simulation of an ROV thruster using a six degree-of-freedom load cell. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
  • Budiyono, A. (2009). Advances in unmanned underwater vehicles technologies: Modeling, control and guidance perspectives.
  • Chin, C. S., Lau, M. W. S., Low, E., & Seet, G. G. L. (2006). Design of thrusters configuration and thrust allocation control for a remotely operated vehicle. Paper presented at the 2006 IEEE Conference on Robotics, Automation and Mechatronics.
  • Christ, R. D., & Wernli Sr, R. L. (2013). The ROV manual: a user guide for remotely operated vehicles: Butterworth-Heinemann.
  • Gülgün, T., Alankaya, G., Duran, M. E., Erdoğdu, M., DURDU, A., YALÇINKAYA, İ. s., & Terzioğlu, H. (2020). Analysis of the Effect on the Thrust Force as a Result of Positioning Thrusters at Different Angles in Underwater Vehicles in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi, 357-362.
  • Gülgün, T., Alankaya, G., Duran, M. E., Erdoğdu, M., Yalçinkaya, İ., Durdu, A., & Terzioğlu, H. (2020). Low-Cost Unmanned Underwater Vehicle Design. Avrupa Bilim ve Teknoloji Dergisi, 363-367.
  • Healey, A. J., Rock, S., Cody, S., Miles, D., & Brown, J. (1995). Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE Journal of Oceanic Engineering, 20(4), 354-361.
  • Ludvigsen, M., Aasly, K., Ellefmo, S., Zylstra, M., & Pardey, M. (2017). ROV based drilling for deep sea mining exploration. Paper presented at the OCEANS 2017-Aberdeen.
  • Muljowidodo, K., Adi N, S., Prayogo, N., & Budiyono, A. (2009). Design and testing of underwater thruster for SHRIMP ROV-ITB.
  • Negahdaripour, S., & Firoozfam, P. (2006). An ROV stereovision system for ship-hull inspection. IEEE Journal of Oceanic Engineering, 31(3), 551-564.
  • Nian, R., He, B., Yu, J., Bao, Z., & Wang, Y. (2013). ROV-based underwater vision system for intelligent fish ethology research. International Journal of Advanced Robotic Systems, 10(9), 326.
  • Tangorra, J. L., Davidson, S. N., Hunter, I. W., Madden, P. G., Lauder, G. V., Dong, H., . . . Mittal, R. (2007). The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 32(3), 533-550.
  • Yoerger, D. R., Cooke, J. G., & Slotine, J.-J. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Talha Gülgün 0000-0003-4896-8611

İsmail Yalçınkaya 0000-0002-6567-399X

Mertcan Erdoğdu 0000-0003-4613-8729

Akif Durdu 0000-0002-5611-2322

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Gülgün, T., Yalçınkaya, İ., Erdoğdu, M., Durdu, A. (2021). İnsansız Su Altı Araçlarında Kullanılan İtici Motorların İtki Kuvveti Hesaplanmasında Uygulanan Analiz Yöntemlerinin Karşılaştırılması. Avrupa Bilim Ve Teknoloji Dergisi(31), 791-795. https://doi.org/10.31590/ejosat.1008881