Research Article
BibTex RIS Cite

Determination of Chlorsulfuron and Pendimethalin in Soil Samples Using Modified QuEChERS Method by Liquid Chromatography-Tandem Mass Spectrometry

Year 2021, Issue: 31, 539 - 544, 31.12.2021
https://doi.org/10.31590/ejosat.1010792

Abstract

Pesticides, which accumulate in the ecosystem at high concentrations, interfere with the food chain of life forms and cause significant damage to them. The continuous increase in soil and water pollution due to the extensive use of pesticides has made it necessary to develop effective analytical methods to detect pesticides and to continuously monitor the level of residues with these methods.
In this study, an analytical method for the detection of chlorsulfuron and pendimenthalin in soil matrix was developed and validated. The soil sample was fortified with a known quantity of pesticides at three different concentration levels (0.01, 0.05 and 0.1 mg/kg) and the analytes were extracted via a modified QuEChERS method.
Recovery studies were performed with 5 different modified QuEChERS methods. Better recoveries were obtained in T4 method (extraction with 266.6 mg MgSO4, 66.6 mg NaCl, 66.6 mg TSCD and 33.3 mg DHS, d-SPE cleanup with 300 mg MgSO4 and 100 mg PSA). The recoveries were in the range 70–120 %, with relative standard deviation (RSD)values lower than 15 %. Chlorsulfuron and pendimenthalin of Limits of detection (LODs) were 0.96 and 1.30 μg kg−1 and limits of quantification (LOQs) were 3.19 and 4.34 μg kg−1, respectively.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431.
  • Andressa, G., Djenaine, D. S., & Sergio A. S., M., (2011).Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods.Microchemical Journal, 98(1), 9–143.
  • Bletsou, A. A., Hanafi, A. H., Dasenaki, M.E., & Thomaidis N.S. (2013). Development of specific LC-ESI-MS/MS methods to determine bifenthrin, lufenuron and iprodione residue levels in green beans, peas and chili peppers under Egyptian field condition. Food Anal Methods 6:1099–112.
  • Bonmatin, J. M., Moineau, I., Charvet, R., Fleche, C., Colin, M. E., & Bengsch, E. R. (2003). A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75:2027–2033.
  • Botitsi, H. V., Garbis, S. D., Economou, A., &Tsipi D. F. (2011). Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev 30:907–939.
  • Chopra, I., Chauhan, R., & Kumari, B. (2015). Persistence of pendimethalin in/on wheat, straw, soil and water. Bulletin of Environmental Contamination and Toxicology, 95(5), 694– 699.
  • Diğrak, M., Kirbağ, S. & Özçelik, S. (1996). Bazı Pestisitlerin Toprak Mikroorganizmaları Üzerine Etkisi. Turkish Journal of Agriculture and Forestry, TÜBİTAK, 20, 165-173. Dolores, B. M., María, M. G., Piedad, P. V., & Dolores, M., G. G. (2007). Simple and rapid determination of benzoylphenylurea pesticides in river water and vegetables by LC–ESI-MS. Chromatographia, 66(7-8), 533–538.
  • EU (European Union). (2008). Commission Regulation (EC) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. Official Journal of the European Union L, 51, 1-398.
  • EU (European Union). (2019). Commission Regulation (EU) 2019/1791 of 17 October 2019 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1-decanol, 2,4-D, ABE-IT 56, cyprodinil, dimethenamid, fatty alcohols, florpyrauxifen-benzyl, fludioxonil, fluopyram, mepiquat, pendimethalin, picolinafen, pyraflufen-ethyl, pyridaben, S-abscisic acid and trifloxystrobin in or on certain products. Official Journal of the European Union L, 62, 1-66.
  • Gaweł, M., Kiljanek, T., Niewiadowska, A., Semeniuk, S., Goliszek, M., Burek, O., & Posyniak, A. (2019). Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry, Food Chemistry, Volume 282, Pages36-47.https://doi.org/10.1016/j.foodchem.2019.01 .003
  • Han, L., Guo, B. Y., Feng, J. H., Lu, X. M., & Lin J.M. (2008). Study on the enantioselective degradation of imazethapyr in soil by CE. Chromatographia 68:1071–1073.
  • Hernandez, F., Pozo, O. J., Sancho, J. V., Bijlsma, L., Barreda, M., & Pitarch, E. (2006) Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. J Chromatogr A 1109:242–252.
  • Islam, A. K. M. M., Hong, S. M., Lee, H. S., Moon, B. C., Kim, D., & Kwon, H., (2018). Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC-ESI-MS/ MS, GC-MS and UPLC-DAD. Journal of Food Science and Technology, 55(10), 3930–3938.
  • Jigneshkumar, V. R., & Suresh, K. K. (2017). Simple and selective detection of pendimethalin herbicide in water and food samples based on the aggregation of ractopamine dithiocarbamate functionalized gold nanoparticles. Sensors and Actuators B: Chemical, 245, 541–550.
  • Kurutaş, E. B., & Kılınç, M. (2003). Pestisitlerin Biyolojik Sistemler Üzerine Etkisi. Arşiv Kaynak Tarama Dergisi, 12 (3).
  • Mohammad, F., Roya, N., Hooshang, S., & Mohammadkazem, R. (2018). Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS with liquid chromatography-tandem mass spectrometry. Food Chemistry, 240, 634–641.
  • Navneet, K., & Makhan, S. B. (2015). Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems. Environmental Monitoring and Assessment, 187(5), 221–230.
  • Park, J. H., Mamun, M. I., Choi, J. H., Abd El-Aty, A. M., Assayed, M. E., Choi, W. J., Yoon, K. S., Han, S. S., Kim, H. K., Park, B. J., Kim, K. S., Kim, S. D., Choi, H. G., & Shim, J. H., (2010). Development of a multiresidue method for the determination of multiclass pesticides in soil using GC. Biomedical chromatography: BMC, 24(8), 893–901. https://doi.org/10.1002/bmc.1383
  • Pinheiro, A., & de Andrade, J. B., (2009). Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 79(5), 1354–1359. https://doi.org/10.1016/j.talanta.2009.06.002
  • Rejczak, T., & Tuzimski, T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry, 19, 980–1010. https://doi.org/10.1515/chem-2015-0109
  • Saha, A., Shabeer T P, A., Banerjee, K., Hingmire, S., Bhaduri, D., Jain, N. K., & Utture, S. (2015). Simultaneous analysis of herbicides pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl by LC-MS/MS and safety evaluation of their harvest time residues in peanut (Arachis hypogaea L.). Journal of food science and technology, 52(7), 4001–4014. https://doi.org/10.1007/s13197-014-1473-9
  • SANTE. (2019). Document No Sante/12682/2019 Method validation & quality control procedures for pesticide residues analysis in food & feed. European Commission: Brussels, Belgium.
  • Sarkar S., Berbardes, D.J., Keely, J., Möhring, N. & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. EU publications. https://doi.org/10.2861/28995
  • Sato, K. (1987). Penthaclorophenol (PCP) Tolerance of Bacteria Isolated from Soil Percolated with PCP. Journal of Pesticide Science, 12, 582-589.
  • Taylor, M. D., Klaine, S. J., Carvalho, F. P., & Barcelo, D. (2002). Pesticide residues in coastal tropical ecosystems: distribution, fate and efects. CRC Press, Boca Raton.
  • Sharma, A., Kumar, V., Bhardwaj, R., & Thukral, A.K. (2017). Seed presoaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicol Environ Chem 99(1):95–103.
  • Wong, J., Hao, C., Zhang, K., Yang, P., Banerjee, K., Hayward, D., Iftakhar, I., Schreiber, A., Tech, K., Sack, C., Smoker, M., Chen, X., Utture, S. C. & Oulkar D.P., (2010). Development and interlaboratory validation of a QuEChERS-Based liquid chromatography-tandem mass spectrometry method for multiresidue pesticide analysis. J Agric Food Chem 58: 5897–5903.
  • Yang, Q., Ai, X., Li, S., Liu, H., & Liu, Y. (2019). Determination of pendimethalin in water, sediment, and Procambarus clarkii by high performance liquid chromatography-triple quadrupole mass spectrometry. Environ Monit Assess 191, 621. https://doi.org/10.1007/s10661-019-7794-4
  • Zhang, Z. H., Dong, M. F., Hao, X. H., Han, L. J., Song, S. Y., & Yao, W., (2019). Evaluation of cleanup procedures in pesticide multi-residue analysis with QuEChERS in cinnamon bark. Food Chemistry, 276, 140–146.
  • Zeng, D. Y., Shi H. Y., Li, B., Wang, M., & Song, B. A. (2006). Development of an enzyme-linked immunosorbent assay for quantitative determination of quizalofop-p-ethyl. J Agric Food Chem 54: 8682–86

Sıvı Kromatografi-Tandem Kütle Spektrometrisi ile Modifiye QuEChERS Yöntemi Kullanılarak Chlorsulfuron ve Pendimethalinin Toprakda Belirlenmesi

Year 2021, Issue: 31, 539 - 544, 31.12.2021
https://doi.org/10.31590/ejosat.1010792

Abstract

Ekosistemde yüksek konsantrasyonlarda biriken pestisitler, canlıların besin zincirine karışarak onlara önemli zararlar vermektedir. Pestisitlerin yaygın kullanımı nedeniyle toprak ve su kirliliğinin sürekli artması, pestisitlerin tespiti için etkin analitik yöntemlerin geliştirilmesini ve bu yöntemlerle kalıntı düzeylerinin sürekli izlenmesini gerekli kılmıştır.
Bu çalışmada, toprak matrisinde chlorsulfuron ve pendimenthalin tespiti için analitik bir yöntem geliştirilmiş ve valide edilmiştir. Toprak numunesi bilinen miktarda pestisit ile üç farklı konsantrasyonda (0.01, 0.05 ve 0.1 mg/kg) fortifike edilmiş ve analitler modifiye QuEChERS yöntemi ile ekstrakte edilmiştir.
Geri kazanım çalışmaları 5 farklı modifiye QuEChERS yöntemi ile gerçekleştirilmiştir. T4 yönteminde (266.6 mg MgSO4, 66.6 mg NaCl, 66.6 mg TSCD ve 33.3 mg DHS ile ekstraksiyon, 300 mg MgSO4 ve 100 mg PSA ile d-SPE temizliği) daha iyi geri kazanımlar elde edilmiştir. Geri kazanımlar %70-120 aralığında olup, bağıl standart sapma (RSD) değerleri %15'ten düşük bulunmuştur. Chlorsulfuron ve pendimenthalin sırasıyla LOD değerleri 0,96 ve 1,30 μg kg-1 ve LOQ değerleri 3,19 ve 4,34 μg kg-1 olarak belirlenmiştir.

Project Number

-

References

  • Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431.
  • Andressa, G., Djenaine, D. S., & Sergio A. S., M., (2011).Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods.Microchemical Journal, 98(1), 9–143.
  • Bletsou, A. A., Hanafi, A. H., Dasenaki, M.E., & Thomaidis N.S. (2013). Development of specific LC-ESI-MS/MS methods to determine bifenthrin, lufenuron and iprodione residue levels in green beans, peas and chili peppers under Egyptian field condition. Food Anal Methods 6:1099–112.
  • Bonmatin, J. M., Moineau, I., Charvet, R., Fleche, C., Colin, M. E., & Bengsch, E. R. (2003). A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75:2027–2033.
  • Botitsi, H. V., Garbis, S. D., Economou, A., &Tsipi D. F. (2011). Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev 30:907–939.
  • Chopra, I., Chauhan, R., & Kumari, B. (2015). Persistence of pendimethalin in/on wheat, straw, soil and water. Bulletin of Environmental Contamination and Toxicology, 95(5), 694– 699.
  • Diğrak, M., Kirbağ, S. & Özçelik, S. (1996). Bazı Pestisitlerin Toprak Mikroorganizmaları Üzerine Etkisi. Turkish Journal of Agriculture and Forestry, TÜBİTAK, 20, 165-173. Dolores, B. M., María, M. G., Piedad, P. V., & Dolores, M., G. G. (2007). Simple and rapid determination of benzoylphenylurea pesticides in river water and vegetables by LC–ESI-MS. Chromatographia, 66(7-8), 533–538.
  • EU (European Union). (2008). Commission Regulation (EC) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. Official Journal of the European Union L, 51, 1-398.
  • EU (European Union). (2019). Commission Regulation (EU) 2019/1791 of 17 October 2019 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1-decanol, 2,4-D, ABE-IT 56, cyprodinil, dimethenamid, fatty alcohols, florpyrauxifen-benzyl, fludioxonil, fluopyram, mepiquat, pendimethalin, picolinafen, pyraflufen-ethyl, pyridaben, S-abscisic acid and trifloxystrobin in or on certain products. Official Journal of the European Union L, 62, 1-66.
  • Gaweł, M., Kiljanek, T., Niewiadowska, A., Semeniuk, S., Goliszek, M., Burek, O., & Posyniak, A. (2019). Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry, Food Chemistry, Volume 282, Pages36-47.https://doi.org/10.1016/j.foodchem.2019.01 .003
  • Han, L., Guo, B. Y., Feng, J. H., Lu, X. M., & Lin J.M. (2008). Study on the enantioselective degradation of imazethapyr in soil by CE. Chromatographia 68:1071–1073.
  • Hernandez, F., Pozo, O. J., Sancho, J. V., Bijlsma, L., Barreda, M., & Pitarch, E. (2006) Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. J Chromatogr A 1109:242–252.
  • Islam, A. K. M. M., Hong, S. M., Lee, H. S., Moon, B. C., Kim, D., & Kwon, H., (2018). Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC-ESI-MS/ MS, GC-MS and UPLC-DAD. Journal of Food Science and Technology, 55(10), 3930–3938.
  • Jigneshkumar, V. R., & Suresh, K. K. (2017). Simple and selective detection of pendimethalin herbicide in water and food samples based on the aggregation of ractopamine dithiocarbamate functionalized gold nanoparticles. Sensors and Actuators B: Chemical, 245, 541–550.
  • Kurutaş, E. B., & Kılınç, M. (2003). Pestisitlerin Biyolojik Sistemler Üzerine Etkisi. Arşiv Kaynak Tarama Dergisi, 12 (3).
  • Mohammad, F., Roya, N., Hooshang, S., & Mohammadkazem, R. (2018). Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS with liquid chromatography-tandem mass spectrometry. Food Chemistry, 240, 634–641.
  • Navneet, K., & Makhan, S. B. (2015). Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems. Environmental Monitoring and Assessment, 187(5), 221–230.
  • Park, J. H., Mamun, M. I., Choi, J. H., Abd El-Aty, A. M., Assayed, M. E., Choi, W. J., Yoon, K. S., Han, S. S., Kim, H. K., Park, B. J., Kim, K. S., Kim, S. D., Choi, H. G., & Shim, J. H., (2010). Development of a multiresidue method for the determination of multiclass pesticides in soil using GC. Biomedical chromatography: BMC, 24(8), 893–901. https://doi.org/10.1002/bmc.1383
  • Pinheiro, A., & de Andrade, J. B., (2009). Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 79(5), 1354–1359. https://doi.org/10.1016/j.talanta.2009.06.002
  • Rejczak, T., & Tuzimski, T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry, 19, 980–1010. https://doi.org/10.1515/chem-2015-0109
  • Saha, A., Shabeer T P, A., Banerjee, K., Hingmire, S., Bhaduri, D., Jain, N. K., & Utture, S. (2015). Simultaneous analysis of herbicides pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl by LC-MS/MS and safety evaluation of their harvest time residues in peanut (Arachis hypogaea L.). Journal of food science and technology, 52(7), 4001–4014. https://doi.org/10.1007/s13197-014-1473-9
  • SANTE. (2019). Document No Sante/12682/2019 Method validation & quality control procedures for pesticide residues analysis in food & feed. European Commission: Brussels, Belgium.
  • Sarkar S., Berbardes, D.J., Keely, J., Möhring, N. & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. EU publications. https://doi.org/10.2861/28995
  • Sato, K. (1987). Penthaclorophenol (PCP) Tolerance of Bacteria Isolated from Soil Percolated with PCP. Journal of Pesticide Science, 12, 582-589.
  • Taylor, M. D., Klaine, S. J., Carvalho, F. P., & Barcelo, D. (2002). Pesticide residues in coastal tropical ecosystems: distribution, fate and efects. CRC Press, Boca Raton.
  • Sharma, A., Kumar, V., Bhardwaj, R., & Thukral, A.K. (2017). Seed presoaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicol Environ Chem 99(1):95–103.
  • Wong, J., Hao, C., Zhang, K., Yang, P., Banerjee, K., Hayward, D., Iftakhar, I., Schreiber, A., Tech, K., Sack, C., Smoker, M., Chen, X., Utture, S. C. & Oulkar D.P., (2010). Development and interlaboratory validation of a QuEChERS-Based liquid chromatography-tandem mass spectrometry method for multiresidue pesticide analysis. J Agric Food Chem 58: 5897–5903.
  • Yang, Q., Ai, X., Li, S., Liu, H., & Liu, Y. (2019). Determination of pendimethalin in water, sediment, and Procambarus clarkii by high performance liquid chromatography-triple quadrupole mass spectrometry. Environ Monit Assess 191, 621. https://doi.org/10.1007/s10661-019-7794-4
  • Zhang, Z. H., Dong, M. F., Hao, X. H., Han, L. J., Song, S. Y., & Yao, W., (2019). Evaluation of cleanup procedures in pesticide multi-residue analysis with QuEChERS in cinnamon bark. Food Chemistry, 276, 140–146.
  • Zeng, D. Y., Shi H. Y., Li, B., Wang, M., & Song, B. A. (2006). Development of an enzyme-linked immunosorbent assay for quantitative determination of quizalofop-p-ethyl. J Agric Food Chem 54: 8682–86
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tarık Balkan 0000-0003-4756-4842

Project Number -
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Balkan, T. (2021). Determination of Chlorsulfuron and Pendimethalin in Soil Samples Using Modified QuEChERS Method by Liquid Chromatography-Tandem Mass Spectrometry. Avrupa Bilim Ve Teknoloji Dergisi(31), 539-544. https://doi.org/10.31590/ejosat.1010792