Research Article
BibTex RIS Cite

Genişletilmiş Kapı Alan Etkili Transistör Tabanlı Mikrosensör ile pH ve Üre Tespiti

Year 2021, Issue: 31, 874 - 880, 31.12.2021
https://doi.org/10.31590/ejosat.1012049

Abstract

Burada, pH ve ürenin yüksek hassasiyette tespiti için genişletilmiş kapı alan-etkili transistör tabanlı (EGFET) mikrosensörler geliştirilmiştir. EGFET, bir mikroelektrot ile entegre edilerek oluşturulmuştur. Kısaca, EGFET-tabanlı pH mikrosensörü, mikroelektrot yüzeyine elektropolimerizasyon yoluyla polipirol (PPy) modifiye edilerek ve buna küçük, basit ve ucuz yarı iletken metal oksit alan-etkili transistör (MOSFET) entegre edilmesiyle geliştirilmiştir. EGFET-tabanlı üre mikrosensöründe ise, üreaz enzimi PPy içerisine mobilize edilmiştir. pH ve üre ölçümleri sırasıyla farklı pH değerlerine ve üre konsantrasyonlarına sahip solüsyonlarla yapılmıştır. Sonuçlar pH mikrosensörünün pH 5-12 aralığında 67 mV/pH gibi çok iyi bir hassasiyete sahip olduğunu göstermiştir. Benzer şekilde, EGFET-tabanlı üre mikrosensörü, 35.5 mV/decade üre ve 10 µA/decade üre hassasiyetleriyle birlikte 10-9 - 10-5 M üre aralığında doğrusal bir yanıt gösterdi. Bildirilen EGFET pH ve üre mikrosensörleri, biyomedikal alanda, özellikle yerel analizin gerekli olduğu uygulamalarda kullanım için büyük potansiyele sahiptir.

References

  • Adeloju, S. B., Shaw, S. J., & Wallace, G. G. (1996). Polypyrrole-based amperometric flow injection biosensor for urea. Analytica Chimica Acta, 323(1-3), 107-113.
  • Ahuja, T., Mir, I. A., & Kumar, D. (2008). Potentiometric urea biosensor based on BSA embedded surface modified polypyrrole film. Sensors and Actuators B: Chemical, 134(1), 140-145.
  • Avolio, R., Grozdanov, A., Avella, M., Barton, J., Cocca, M., De Falco, F., ... & Magni, P. (2020). Review of pH sensing materials from macro-to nano-scale: Recent developments and examples of seawater applications. Critical Reviews in Environmental Science and Technology, 1-43.
  • Aydin, V. K., & Şen, M. (2017). A facile method for fabricating carbon fiber-based gold ultramicroelectrodes with different shapes using flame etching and electrochemical deposition. Journal of Electroanalytical Chemistry, 799, 525-530.
  • Aykaç, A., Tunç, I. D., Guneş, F., Erol, M., & Şen, M. (2021). Sensitive pH measurement using EGFET microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology, 32, 365501.
  • Bao, Q., Yang, Z., Song, Y., Fan, M., Pan, P., Liu, J., ... & Wei, J. (2019). Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink. Journal of Materials Science: Materials in Electronics, 30(2), 1751-1759.
  • Bisht, V., Takashima, W., & Kaneto, K. (2005). An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials, 26(17), 3683-3690.
  • Bisht, V., Takashima, W., & Kaneto, K. (2005). Development of a potentiometric urea biosensor based on copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Reactive and Functional Polymers, 62(1), 51-59.
  • Cosnier, S. (2000). Biosensors based on immobilization of biomolecules by electrogenerated polymer films. Applied biochemistry and biotechnology, 89(2), 127-138.
  • Fenoy, G. E., Marmisollé, W. A., Azzaroni, O., & Knoll, W. (2020). Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosensors and Bioelectronics, 148, 111796. Ghoneim, M. T., Nguyen, A., Dereje, N., Huang, J., Moore, G. C., Murzynowski, P. J., & Dagdeviren, C. (2019). Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chemical reviews, 119(8), 5248-5297.
  • Jakhar, S., & Pundir, C. S. (2018). Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosensors and Bioelectronics, 100, 242-250. Lakard, B., Segut, O., Lakard, S., Herlem, G., & Gharbi, T. (2007). Potentiometric miniaturized pH sensors based on polypyrrole films. Sensors and Actuators B: Chemical, 122(1), 101-108.
  • Li, Y., Mao, Y., Xiao, C., Xu, X., & Li, X. (2020). Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Advances, 10(1), 21-28. Mello, H. J. N. P. D., & Mulato, M. (2020). Enzymatically functionalized polyaniline thin films produced with one-step electrochemical immobilization and its application in glucose and urea potentiometric biosensors. Biomedical microdevices, 22(1), 1-9.
  • Mo, X., Wang, J., Wang, Z., & Wang, S. (2003). Potentiometric pH responses of fibrillar polypyrrole modified electrodes. Sensors and Actuators B: Chemical, 96(3), 533-536.
  • Mokhtarifar, N., Goldschmidtboeing, F., & Woias, P. (2019). ITO/glass as extended-gate of FET: A low-cost method for differential pH-sensing in alkaline solutions. Journal of The Electrochemical Society, 166(12), B896.
  • Neupane, S., Subedi, V., Thapa, K. K., Yadav, R. J., Nakarmi, K. B., Gupta, D. K., & Yadav, A. P. (2021). An alternative pH sensor: graphene oxide-based electrochemical sensor. Emergent Materials, 1-9.
  • Pan, C. W., Chou, J. C., Kao, I. K., Sun, T. P., & Hsiung, S. K. (2003). Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device. IEEE sensors journal, 3(2), 164-170.
  • Pandey, A. K., Pandey, P. C., Agrawal, N. R., & Das, I. (2018). Synthesis and characterization of dendritic polypyrrole silver nanocomposite and its application as a new urea biosensor. Journal of Applied Polymer Science, 135(3), 45705.
  • Prissanaroon-Ouajai, W., Pigram, P. J., Jones, R., & Sirivat, A. (2009). A sensitive and highly stable polypyrrole-based pH sensor with hydroquinone monosulfonate and oxalate co-doping. Sensors and Actuators B: Chemical, 138(2), 504-511.
  • Pruna, R., Palacio, F., Fuentes, I., Viñas, C., Teixidor, F., & López, M. (2018). A Novel Transparent pH Sensor Based on a Nanostructured ITO Electrode Coated with [3, 3′-Co (1, 2-C2B9H11) 2]-Doped Poly (pyrrole). In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 13, p. 869).
  • Pullano, S. A., Critello, C. D., Mahbub, I., Tasneem, N. T., Shamsir, S., Islam, S. K., ... & Fiorillo, A. S. (2018). EGFET-based sensors for bioanalytical applications: A review. Sensors, 18(11), 4042.
  • Pullano, S. A., Tasneem, N. T., Mahbub, I., Shamsir, S., Greco, M., Islam, S. K., & Fiorillo, A. S. (2019). Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors, 19(5), 1063.
  • Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293.
  • Singh, K., Her, J. L., Lou, B. S., Pang, S. T., & Pan, T. M. (2019). An extended-gate FET-based pH sensor with an InZn x O y membrane fabricated on a flexible polyimide substrate at room temperature. IEEE Electron Device Letters, 40(5), 804-807.
  • Sinha, S., Mukhiya, R., Sharma, R., Khanna, P. K., & Khanna, V. K. (2019). Fabrication, characterization and electrochemical simulation of AlN-gate ISFET pH sensor. Journal of Materials Science: Materials in Electronics, 30(7), 7163-7174.
  • Syu, M. J., & Chang, Y. S. (2009). Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosensors and Bioelectronics, 24(8), 2671-2677.
  • Şen, M., & Demirci, A. (2016). pH-dependent ionic-current-rectification in nanopipettes modified with glutaraldehyde cross-linked protein membranes. RSC advances, 6(89), 86334-86339.
  • Şen, M., Ino, K., Inoue, K. Y., Suda, A., Kunikata, R., Matsudaira, M., Shiku, H. & Matsue, T. (2014). Electrochemical evaluation of sarcomeric α-actinin in embryoid bodies after gene silencing using an LSI-based amperometric sensor array. Analytical Methods, 6(16), 6337-6342.
  • Şen, M., Ino, K., Ramón-Azcón, J., Shiku, H., & Matsue, T. (2013a). Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes. Lab on a Chip, 13(18), 3650-3652.
  • Şen, M., Ino, K., Shiku, H., & Matsue, T. (2012). Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device. Lab on a Chip, 12(21), 4328-4335.
  • Vonau, W., & Guth, U. (2006). pH monitoring: a review. Journal of Solid State Electrochemistry, 10(9), 746-752.
  • Yun, D. H., Song, M. J., Sim, H., & Hong, S. I. (2006, October). Sensitivity improvement of polypyrrole-based urea sensor using copper ion doping effect. In 2006 IEEE Nanotechnology Materials and Devices Conference (Vol. 1, pp. 574-575). IEEE.

Detection of pH and Urea with an Extended Gate Field-Effect Transistor Based Microsensor

Year 2021, Issue: 31, 874 - 880, 31.12.2021
https://doi.org/10.31590/ejosat.1012049

Abstract

Here, extended gate field-effect transistor-based (EGFET) microsensors have been developed for high sensitive detection of pH and urea. EGFET was made by integrating with a microelectrode. Briefly, the EGFET-based pH microsensor was developed by modifying the surface of a microelectrode with polypyrrole (PPy) via electropolymerization and integrating it with a small, simple and inexpensive metal oxide semiconductor field-effect transistor (MOSFET). As for the EGFET-based urea microsensor, urease enzyme was immobilized in PPy. The measurements of pH and urea were made in solutions at different pH values and urea concentrations, respectively. The results showed that the pH microsensor had a very good sensitivity of 67 mV/pH in a pH range of 5-12. Similarly, the EGFET-based urea microsensor showed a linear response range of 10-9 to 10-5 M urea with sensitivities of 35.5 mV/decade urea and 10 µA/decade urea. The reported EGFET-based pH and urea microsensors have great potential for use in the biomedical field, especially in applications where local analysis is required.

References

  • Adeloju, S. B., Shaw, S. J., & Wallace, G. G. (1996). Polypyrrole-based amperometric flow injection biosensor for urea. Analytica Chimica Acta, 323(1-3), 107-113.
  • Ahuja, T., Mir, I. A., & Kumar, D. (2008). Potentiometric urea biosensor based on BSA embedded surface modified polypyrrole film. Sensors and Actuators B: Chemical, 134(1), 140-145.
  • Avolio, R., Grozdanov, A., Avella, M., Barton, J., Cocca, M., De Falco, F., ... & Magni, P. (2020). Review of pH sensing materials from macro-to nano-scale: Recent developments and examples of seawater applications. Critical Reviews in Environmental Science and Technology, 1-43.
  • Aydin, V. K., & Şen, M. (2017). A facile method for fabricating carbon fiber-based gold ultramicroelectrodes with different shapes using flame etching and electrochemical deposition. Journal of Electroanalytical Chemistry, 799, 525-530.
  • Aykaç, A., Tunç, I. D., Guneş, F., Erol, M., & Şen, M. (2021). Sensitive pH measurement using EGFET microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology, 32, 365501.
  • Bao, Q., Yang, Z., Song, Y., Fan, M., Pan, P., Liu, J., ... & Wei, J. (2019). Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink. Journal of Materials Science: Materials in Electronics, 30(2), 1751-1759.
  • Bisht, V., Takashima, W., & Kaneto, K. (2005). An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials, 26(17), 3683-3690.
  • Bisht, V., Takashima, W., & Kaneto, K. (2005). Development of a potentiometric urea biosensor based on copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Reactive and Functional Polymers, 62(1), 51-59.
  • Cosnier, S. (2000). Biosensors based on immobilization of biomolecules by electrogenerated polymer films. Applied biochemistry and biotechnology, 89(2), 127-138.
  • Fenoy, G. E., Marmisollé, W. A., Azzaroni, O., & Knoll, W. (2020). Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosensors and Bioelectronics, 148, 111796. Ghoneim, M. T., Nguyen, A., Dereje, N., Huang, J., Moore, G. C., Murzynowski, P. J., & Dagdeviren, C. (2019). Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chemical reviews, 119(8), 5248-5297.
  • Jakhar, S., & Pundir, C. S. (2018). Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosensors and Bioelectronics, 100, 242-250. Lakard, B., Segut, O., Lakard, S., Herlem, G., & Gharbi, T. (2007). Potentiometric miniaturized pH sensors based on polypyrrole films. Sensors and Actuators B: Chemical, 122(1), 101-108.
  • Li, Y., Mao, Y., Xiao, C., Xu, X., & Li, X. (2020). Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Advances, 10(1), 21-28. Mello, H. J. N. P. D., & Mulato, M. (2020). Enzymatically functionalized polyaniline thin films produced with one-step electrochemical immobilization and its application in glucose and urea potentiometric biosensors. Biomedical microdevices, 22(1), 1-9.
  • Mo, X., Wang, J., Wang, Z., & Wang, S. (2003). Potentiometric pH responses of fibrillar polypyrrole modified electrodes. Sensors and Actuators B: Chemical, 96(3), 533-536.
  • Mokhtarifar, N., Goldschmidtboeing, F., & Woias, P. (2019). ITO/glass as extended-gate of FET: A low-cost method for differential pH-sensing in alkaline solutions. Journal of The Electrochemical Society, 166(12), B896.
  • Neupane, S., Subedi, V., Thapa, K. K., Yadav, R. J., Nakarmi, K. B., Gupta, D. K., & Yadav, A. P. (2021). An alternative pH sensor: graphene oxide-based electrochemical sensor. Emergent Materials, 1-9.
  • Pan, C. W., Chou, J. C., Kao, I. K., Sun, T. P., & Hsiung, S. K. (2003). Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device. IEEE sensors journal, 3(2), 164-170.
  • Pandey, A. K., Pandey, P. C., Agrawal, N. R., & Das, I. (2018). Synthesis and characterization of dendritic polypyrrole silver nanocomposite and its application as a new urea biosensor. Journal of Applied Polymer Science, 135(3), 45705.
  • Prissanaroon-Ouajai, W., Pigram, P. J., Jones, R., & Sirivat, A. (2009). A sensitive and highly stable polypyrrole-based pH sensor with hydroquinone monosulfonate and oxalate co-doping. Sensors and Actuators B: Chemical, 138(2), 504-511.
  • Pruna, R., Palacio, F., Fuentes, I., Viñas, C., Teixidor, F., & López, M. (2018). A Novel Transparent pH Sensor Based on a Nanostructured ITO Electrode Coated with [3, 3′-Co (1, 2-C2B9H11) 2]-Doped Poly (pyrrole). In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 13, p. 869).
  • Pullano, S. A., Critello, C. D., Mahbub, I., Tasneem, N. T., Shamsir, S., Islam, S. K., ... & Fiorillo, A. S. (2018). EGFET-based sensors for bioanalytical applications: A review. Sensors, 18(11), 4042.
  • Pullano, S. A., Tasneem, N. T., Mahbub, I., Shamsir, S., Greco, M., Islam, S. K., & Fiorillo, A. S. (2019). Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors, 19(5), 1063.
  • Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293.
  • Singh, K., Her, J. L., Lou, B. S., Pang, S. T., & Pan, T. M. (2019). An extended-gate FET-based pH sensor with an InZn x O y membrane fabricated on a flexible polyimide substrate at room temperature. IEEE Electron Device Letters, 40(5), 804-807.
  • Sinha, S., Mukhiya, R., Sharma, R., Khanna, P. K., & Khanna, V. K. (2019). Fabrication, characterization and electrochemical simulation of AlN-gate ISFET pH sensor. Journal of Materials Science: Materials in Electronics, 30(7), 7163-7174.
  • Syu, M. J., & Chang, Y. S. (2009). Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosensors and Bioelectronics, 24(8), 2671-2677.
  • Şen, M., & Demirci, A. (2016). pH-dependent ionic-current-rectification in nanopipettes modified with glutaraldehyde cross-linked protein membranes. RSC advances, 6(89), 86334-86339.
  • Şen, M., Ino, K., Inoue, K. Y., Suda, A., Kunikata, R., Matsudaira, M., Shiku, H. & Matsue, T. (2014). Electrochemical evaluation of sarcomeric α-actinin in embryoid bodies after gene silencing using an LSI-based amperometric sensor array. Analytical Methods, 6(16), 6337-6342.
  • Şen, M., Ino, K., Ramón-Azcón, J., Shiku, H., & Matsue, T. (2013a). Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes. Lab on a Chip, 13(18), 3650-3652.
  • Şen, M., Ino, K., Shiku, H., & Matsue, T. (2012). Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device. Lab on a Chip, 12(21), 4328-4335.
  • Vonau, W., & Guth, U. (2006). pH monitoring: a review. Journal of Solid State Electrochemistry, 10(9), 746-752.
  • Yun, D. H., Song, M. J., Sim, H., & Hong, S. I. (2006, October). Sensitivity improvement of polypyrrole-based urea sensor using copper ion doping effect. In 2006 IEEE Nanotechnology Materials and Devices Conference (Vol. 1, pp. 574-575). IEEE.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İpek Avcı This is me

Merve Oğuz This is me

Mustafa Şen 0000-0002-2421-9184

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Avcı, İ., Oğuz, M., & Şen, M. (2021). Detection of pH and Urea with an Extended Gate Field-Effect Transistor Based Microsensor. Avrupa Bilim Ve Teknoloji Dergisi(31), 874-880. https://doi.org/10.31590/ejosat.1012049