Research Article
BibTex RIS Cite

Effect of Seal Friction on the Efficiency of Drive Axles of Construction Trucks

Year 2021, Issue: 31, 655 - 660, 31.12.2021
https://doi.org/10.31590/ejosat.1025469

Abstract

This research aims to increase energy efficiency in drive axles used in construction site trucks. In this study, the data of the torque values of the pinion gear designed during rotation were collected with specially developed torque measurement equipment. The effect of temperature and felt speed on torque caused by friction was investigated. Various coatings have been tried to reduce friction-induced torque. Torque on pinion seal was calculated theoretically and compared with experimental data. As a result, torque losses in the system were evaluated. As a result of the evaluation, there was a 25% increase in torque with an increase in rotation speed up to 90 °C. After 90 °C, due to the change in the physical properties of the material, the torque value decreased by 30%. Our study will continue towards establishing a correlation between radial force, temperature, torque and rotational speed.

References

  • Horve, L. (1996). Shaft Seals for Dynamic Applications (1st ed.). CRC Press. https://doi.org/10.1201/9780367803100
  • El Gadari, M., Fatu, A., & Hajjam, M. (2015). Shaft roughness effect on elasto-hydrodynamic lubrication of rotary lip seals: Experimentation and numerical simulation. Tribology International, 88, 218–227.
  • Shen, D., & Salant, R. F. (2007). An unsteady mixed soft EHL model, with application to a rotary lip seal. Tribology International, 40(4), 646–651.
  • Salant R.F. (1992) On The Sealing Mechanism Of Lip Seals Containing Microundulations. In: Nau B.S. (eds) Fluid Sealing. Fluid Mechanics and its Applications, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2412-6_4
  • Johnston, D.E., & Vogt, R. (1995). Rotary shaft seal friction, the influence of design, material, oil and shaft surface. In SAE Technical Papers. SAE International.
  • Frölich, D., Magyar, B., & Sauer, B. (2014). A comprehensive model of wear, friction and contact temperature in radial shaft seals. Wear, 311(1–2), 71–80.
  • Kim, H.G., Jeon, S. I. (2008). Effect on friction of engine oil seal with engine oil viscosity. International Journal of Automotive Technology, 9(5), 601–606.
  • Kanzaki, Y., Kanno, T., & Kawahara, Y. (1989). A study of blistering phenomenon on rubber seals.
  • Burkhart, C., Emrich, S., Kopnarski, M., Sauer, B. (2020). Excessive shaft wear due to radial shaft seals in lubricated environment. Part I: Analysis and mechanisms. Wear, 460–461.
  • Lahjouji, I., El Gadari, M., & Radouani, M. (2019). Numerical investigation of grooved shaft effects on the rotary lip seal performance with relative lip motion. Lubricants, 7(2).
  • Guo, F., Jia, X., Gao, Z., Wang, Y. (2014). The effect of texture on the shaft surface on the sealing performance of radial lip seals. Science China: Physics, Mechanics and Astronomy, 57(7), 1343–1351.
  • Keller, D., Jacobs, G., Neumann, S. (2020). Development of a low-friction radial shaft seal: Using cfd simulations to optimise the microstructured sealing lip. Lubricants, 8(4).
  • Balyakin, V. B., Falaleev, S. V. (2020). Methods and Means of Reducing Friction Torque in Face Seals. Journal of Friction and Wear, 41(5), 447–452.
  • Votter, M., Wollesen, V. (1999). New tribotechnical materials for the friction pair radial lip seal/shaft. Industrial Lubrication and Tribology, 51(5), 233–238.
  • Flitney, R. (2014). Seals and Sealing Handbook: Sixth Edition. Seals and Sealing Handbook: Sixth Edition (pp. 1–633). Elsevier Inc.

Keçe Sürtünmesinin Şantiye Kamyonlarının Tahrik Akslarının Verimliliği Üzerindeki Etkisi

Year 2021, Issue: 31, 655 - 660, 31.12.2021
https://doi.org/10.31590/ejosat.1025469

Abstract

Bu araştırmanın temel amacı olarak şantiye kamyonlarında kullanılan tahrik akslarında enerji verimliliğini arttırmaktır. Bu çalışma kapsamında tasarlanan pinyon dişlisinin dönme sırasındaki tork değerlerine ait veriler özel olarak geliştirilen tork ölçüm ekipmanı ile toplanmıştır. Sıcaklığın ve keçe devrinin sürtünmeden kaynaklı oluşan tork üzerindeki etkisi araştırılmıştır. Çeşitli kaplamalar denenerek sürtünme kaynaklı tork düşürülmeye çalışılmıştır. Pinyon keçe üzerindeki tork teorik olarak hesaplanmış ve deneysel erilerle karşılaştırılmıştır. Sonuç olarak sistemdeki tork kayıpları değerlendirilmiştir. Yapılan değerlendirme sonucunda 90 °C e kadar Rpm in artmasıyla %25 civarında tork artışı olmuştur. 90 °C den sonra malzemenin fiziksel özelliklerinde değişme meydana geldiği için tork değeri %30 civarında azalmıştır. Çalışmamız radyal kuvvet, sıcaklık, tork ve dönüş hızı arasında bir korelasyon kurulması yönünde devam edecktir.

References

  • Horve, L. (1996). Shaft Seals for Dynamic Applications (1st ed.). CRC Press. https://doi.org/10.1201/9780367803100
  • El Gadari, M., Fatu, A., & Hajjam, M. (2015). Shaft roughness effect on elasto-hydrodynamic lubrication of rotary lip seals: Experimentation and numerical simulation. Tribology International, 88, 218–227.
  • Shen, D., & Salant, R. F. (2007). An unsteady mixed soft EHL model, with application to a rotary lip seal. Tribology International, 40(4), 646–651.
  • Salant R.F. (1992) On The Sealing Mechanism Of Lip Seals Containing Microundulations. In: Nau B.S. (eds) Fluid Sealing. Fluid Mechanics and its Applications, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2412-6_4
  • Johnston, D.E., & Vogt, R. (1995). Rotary shaft seal friction, the influence of design, material, oil and shaft surface. In SAE Technical Papers. SAE International.
  • Frölich, D., Magyar, B., & Sauer, B. (2014). A comprehensive model of wear, friction and contact temperature in radial shaft seals. Wear, 311(1–2), 71–80.
  • Kim, H.G., Jeon, S. I. (2008). Effect on friction of engine oil seal with engine oil viscosity. International Journal of Automotive Technology, 9(5), 601–606.
  • Kanzaki, Y., Kanno, T., & Kawahara, Y. (1989). A study of blistering phenomenon on rubber seals.
  • Burkhart, C., Emrich, S., Kopnarski, M., Sauer, B. (2020). Excessive shaft wear due to radial shaft seals in lubricated environment. Part I: Analysis and mechanisms. Wear, 460–461.
  • Lahjouji, I., El Gadari, M., & Radouani, M. (2019). Numerical investigation of grooved shaft effects on the rotary lip seal performance with relative lip motion. Lubricants, 7(2).
  • Guo, F., Jia, X., Gao, Z., Wang, Y. (2014). The effect of texture on the shaft surface on the sealing performance of radial lip seals. Science China: Physics, Mechanics and Astronomy, 57(7), 1343–1351.
  • Keller, D., Jacobs, G., Neumann, S. (2020). Development of a low-friction radial shaft seal: Using cfd simulations to optimise the microstructured sealing lip. Lubricants, 8(4).
  • Balyakin, V. B., Falaleev, S. V. (2020). Methods and Means of Reducing Friction Torque in Face Seals. Journal of Friction and Wear, 41(5), 447–452.
  • Votter, M., Wollesen, V. (1999). New tribotechnical materials for the friction pair radial lip seal/shaft. Industrial Lubrication and Tribology, 51(5), 233–238.
  • Flitney, R. (2014). Seals and Sealing Handbook: Sixth Edition. Seals and Sealing Handbook: Sixth Edition (pp. 1–633). Elsevier Inc.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Kasım 0000-0002-3024-5207

Barış Engin 0000-0002-3445-9843

İsmail Saraç 0000-0002-8382-3461

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Kasım, H., Engin, B., & Saraç, İ. (2021). Keçe Sürtünmesinin Şantiye Kamyonlarının Tahrik Akslarının Verimliliği Üzerindeki Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(31), 655-660. https://doi.org/10.31590/ejosat.1025469