Review
BibTex RIS Cite

Biotechnological Approaches to Control of Plant Parasitic Nematodes

Year 2021, Issue: 31, 706 - 712, 31.12.2021
https://doi.org/10.31590/ejosat.939277

Abstract

The World population is increasing rapidly therefore, it is increasing the expectation of high efficiency demanded from this agricultural production. During the supply of expectations problem arise belonging to biotic and abiotic factors. Plant parasitic nematodes, one of the biotic factors, cause yield losses around 125 million dollars annually. Control of plant parasitic nematodes is mostly done by chemical pesticides and have place in market approximately 8 million dollars. Chemical pesticides affect human, environment and non-target organisms negatively therefore new alternative control methods need to improve. Biotechnological control methods for plant parasitic nematodes have increased rapidly in recent years. These methods are natural resistance, RNA interference, proteinase inhibitor, lectin base control and Bacillus thuringiensis (Bt) based control. This new approaches of biotechnological methods for controlling plant parasitic nematodes can use for producing high yield and quality products in short period. In this study, biological approaches to control of plant parasitic nematodes have been reviewed.

References

  • Agrios, G.N. (2005). Plant pathology, Elsevier Academic Press pp. 825-874, USA.
  • Atkinson, H.J., Urwin, P.E. & Hussey, R.S. (2009). 15 Plant Biotechnology and Control.Root-knot nematodes, pp.338-362.
  • Baker, J.E., Fabrick, J.A., Kanost, M.R., Reeck, G.R., Kramer, K.J., & Behnke, C.A. (1997). Proteinase inhibitors and resistance of transgenic plants to insects. In Advances in insect control: the role of transgenic plants. CRC Press 1997.
  • Bakker, E., Achenbach, U., Bakker, J., Van Vliet, J., Peleman, J., Segers, B., der Heijden, S., Van der Linde, P., Graveland, R., Hutten, R., Van Eck, H., Coppoolse, E., Van der Vossen, E., Bakker, J., & Goverse, A. (2004). A highresolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics, 109,146–152.
  • Boag, B., & Yeates, G.W. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiversity and Conservation, 7(5), 617-630.
  • Burrows, P.R., & De Waele, D. (1997). Engineering resistance against plant parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA, eds. Cellular and molecular aspects of plant-nematode interactions. Dordrecht, the Netherlands: Kluwer Academic Press, pp. 217– 236.
  • Cai, D., Thurau, T., Tian, Y., Lange, T., Yeh, K.W., & Jung, C. (2003). Sporaminmediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Molecular Biology, 51(6), 839-849.
  • Cowgill, S.E., Wright, C. & Atkinson, H.J. (2002)a. Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids. Molecular Ecolology 11, 821–827.
  • Cowgill, S.E., Bardgett, R.D., Kiezebrink, D.T.& Atkinson, H.J. (2002)b. The effect of transgenic nematode resistance on nontarget organisms in the potato rhizosphere. Journal Applied Ecology 39, 915–923.
  • Cowgill, S.E., & Atkinson, H.J. (2003). A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insects. Transgenic Research 12, 439–449.
  • Cowgill, S.E., Danks, C., & Atkinson, H.J. (2004). Multitrophic interactions involving genetically modified potatoes, non-target aphids, natural enemies and hyperparasitoids. Molecular ecology, 13(3), 639-647.
  • Dağeri, A., Güz, N., & Gürkan, M.O. (2012). A New Approach to Insect Pest Management: RNA interference. Turkish Bulletin of Entomology, 2(3), 223-230.
  • de Majnik, J., Ogbonnaya, F.C., Moullet, O., & Lagudah, E.S. (2003). The Cre1 and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome. Molecular Plant-Microbe Interactions, 16(12), 1129-1134.
  • Dinh, P.T.Y., Brown, C.R., & Elling, A.A. (2014). RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology, 104, 1098–1106.
  • Fairbairn, D.J., Cavallaro, A.S., Bernard, M., Mahalinga-Iyer, J., Graham, M.W., & Botella, J.R. (2007). Host-delivered RNAi: an effective strategy to silencegenes in plant parasitic nematodes. Planta 226, 1525–1533.
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.
  • Fleming, C.C., McKinney, S., McMaster, S., Johnston, M.J.G., Donnelly, P., Kimber, M.J., & Maule, A.G. (2007). Getting to the root of neuronal signalling in plant-parasitic nematodes using RNA interference. Nematology 9, 301–315.
  • Fosu-Nyarko, J., & Jones, M.G.,(2015). Chapter Fourteen-Application of biotechnology for nematode control in crop plants. Advances in Botanical Research, 73, 339-376.
  • Freckman, D.W., & Baldwin, J.G., (1990). Nematoda. Soil biology guide. Wiley, New York, pp. 155-200.
  • Fuller, V.L., Lilley, C.J., Atkinson, H.J., & Urwin, P.E. (2007). Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molecular Plant Pathology. 8, 595–609.
  • Fuller, V.L., Lilley, C.J., & Urwin, P.E. (2008). Nematode resistance. New Phytologist, 180, 27-44.
  • Gheysen, G., & Vanholme, B. (2007). RNAi from plants to nematodes. Trends in Biotechnology, 25, 89–92.
  • Hamamouch, N., Li, C., Hewezi, T., Baum, T.J., Mitchum, M.G., Hussey, R.S., Vodkin, L.O., & Davis, E.L., (2012). The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3 endoglucanase may suppress host defence to promote parasitism. Journal of Experimental Botany, 63, 3683–3695.
  • Harris, R.F.(1981). Effect of water potential on microbial growth and activity. Water potential relations in soil microbiology, 23-95.
  • Hepher, A., & Atkinson, H.J. (1992). Nematode control with protease inhibitors. European Patent Publication. Number 0,502,730 A, 1.
  • Hilder, V.A., Gatehouse, A.M., Sheerman, S.E., Barker, R.F., & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 330(6144), 160-163.
  • Hohn, T. (2007). Plant virus transmission from the insect point of view. Proceedings of the National Academy of Sciences of the United States of America, 13, 104(46),17905-17906.
  • Huang, G.Z., Allen, R., Davis, E.L., Baum, T.J., & Hussey, R.S. (2006)a. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, USA 103,14302–14306.
  • Huang, G., Dong, R., Allen, R., Davis, E.L., Baum, T.J., & Hussey, R.S., (2006)b. A root-knot nematode secretory peptide functions as a ligand for aplant transcription factor. Molecular Plant–Microbe Interactions 19, 463–470.
  • Ibrahim, H. M., Hosseini, P., Alkharouf, N. W., Hussein, E. H., Abd El Kader, Y., Aly, M. A., & Matthews, B. F. (2011). Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC genomics, 12(1), 1-16.
  • ISAAA, 2021. International Service for the Acquisition of Agri-Biotech Applications (ISAAA) https://www.isaaa.org/ resources/publications/biotech_booklets/beyondpromises/download/default.asp [Erişim Tarihi: 04.04.2021]
  • James, C., (2014). Global Status of Commercialized Biotech. ISAAA No. Brief. 49. ISAAA: Ithaca, NY. 2014.
  • Jammes, F., Lecomte, P., de Almeida Engler, J., Bitton, F., Martin-Magninette, M.L., Renou, J.P., Favery, B., & Abad, P. (2005). Genome-wide expressionprofiling of the host response to root-knot nematode infection in Arabidopsis. Plant Journal 44, 447–458.
  • Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., & Napoli, C.A. (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Molecular Biology 31, 957–973.
  • Keen, N. (1999). Mechanisms of pest resistance in plants, pp. 33-36. Proceeding of A Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems (31 January-3 February, 1999, Bethesda, Maryland, USA), 131.
  • Kepenekci, İ. (2012). Nematoloji (Bitki Paraziti ve Entomopatojen Nematodlar) [Genel 4 Nematoloji (Cilt-I) ISBN 978-605-4672-11-0, Taksonomik Nematoloji (Cilt-II) 5 ISBN 978- 605-4672-12-7] Eğitim, Yayım ve Yayımlar Dairesi Başkanlığı, 6 Tarım Bilim Serisi Yayın No:3 (2012/3), LIV+1155.
  • Klink, V. P., Kim, K. H., Martins, V., MacDonald, M. H., Beard, H. S., Alkharouf, N. W., ... & Matthews, B. F. (2009). A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta, 230(1), 53-71.
  • Li, X.Q., Wei, J.Z., Tan, A., & Aroian, R.V. (2007). Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal 5, 455–464.
  • Lilley, C.J., Bakhetia, M., Charlton, W.L., & Urwin, P.E., (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 8, 701–711.
  • Lin, B., Zhuo, K., Wu, P., Cui, R., Zhang, L.H., & Liao, J., (2013). A novel effector protein, MJ-NULG1a, targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism. Molecular Plant-Microbe Interactions, 26, 55–66.
  • Lopes-Caitar, V.S., Pinheiro, J.B. & Marcelino-Guimaraes, F.C. (2019). Nematodes in horticulture: An overview. Journal of Horticultural Science and Crop Research, 1(1), 106.
  • Maggenti, A.R., (1991). Nemata: higher classification. Manual of Agricultural Nematology, Marcel Decker, New York, 147-187.
  • Marban-Mendoza, N., Jeyaprakash, A., Jansson, H.B., Damon, R.A., & Zuckerman, B.M. (1987). Control of root-knot nematodes on tomato by lectins. Journal of Nematology 19, 331–335.
  • Marroquin, L.D., Elyassnia, D., Griffitts, J.S., Feitelson, J.S., & Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155(4), 1693-1699.
  • Nicol, J.M., Turner, S.J., Coyne, D.L., Den Nijs, L., Hockland, S., & Maafi, Z.T. (2011). Current nematode threats to world agriculture. In Genomics and molecular genetics of plant-nematode interactions Springer Netherlands 21-43.
  • Ogbonnaya, F.C., Subrahmanyam, N.C., Moullet, O., De Majnik, J., Eagles, H.A., Brown, J.S., Eastwood, R.F., Kollmorgen, J., Appels, R., & Lagudah, E.S., (2001). Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Australian Journal of Agricultural Research, 52(12), 1367-1374.
  • Oka, Y., Chet, I., & Spiegel, Y. (1997). An immunoreactive protein to wheat-germ agglutinin antibody is induced in oat roots following invasion of the cereal cyst nematode Heterodera avenae, and by jasmonate. Molecular Plant–Microbe Interactions 10: 961-969.
  • Oka, Y. (2020). From Old-Generation to Next-Generation Nematicides. Agronomy, 10(9), 1387.
  • Öktem, H.A. (2001). Böceklere Dayanıklı Transgenik Bitkilerin Geliştirilmesi; Bitki Biyoteknolojisi Edt.; Sebahattin Özcan, Ekrem Gürel, Mehmet Babaoğlu, Türkiye.
  • Özcan, S. (2001). Bitki Biyoteknolojisi Edt.; Sebahattin Özcan, Ekrem Gürel, Mehmet Babaoğlu, Türkiye.
  • Patel, N., Hamamouch, N., Li, C., Hussey, R., Mitchum, M., Baum, T., Wang, X., & Davis, E.L. (2008). Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. Journal of Nematology, 40, 299–310.
  • Pekcan, G., Köksal, E., Küçükerdönmez, Ö., & Özel, H., (2006). Household food waste in Turkey. Statistics Division, Working Papers series NESS/ESSA/006e. Rome, FAO.
  • Perry, R.N., & Moens, M., (2006). Ectoparasitic Nematodes, Plant Nematology CABI, Belgium 266–271.
  • Peumans, W.J., & Van Damme, E.J.M. (1995). Lectins as plant defense proteins. Plant Physiology, 109: 347–352.
  • Ryan, C.A. (1990). Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual review of phytopathology, 28(1), 425-449.
  • Sindhu, A.S., Maier, T.R., Mitchum, M.G., Hussey, R.S., Davis, E.L., & Baum, T.J. (2009). Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. Journal of Experimental Botany, 60, 315–324.
  • Steeves, R.M., Todd, T.C., Essig, J.S., & Trick, H.N. (2006). Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress. Heterodera glycines reproduction. Functional Plant Biology 33, 991–999.
  • Thorne, G. (1961). Principles of Nematology. Principles of Nematology 1961.
  • Thurau, T., Ye, W., & Cai, D. (2010). Insect and nematode resistance. In Genetic Modification of Plants Springer Berlin Heidelberg. 177-197.
  • Toros, S., Maden, S., & Sözeri, S. (1991). Tarımsal Savaşım Yöntem ve İlaçları. Ankara Üniversitesi Ziraat Fakültesi Yay, 1222.
  • Urwin, P.E., Lilley, C.J., McPherson, M.J., Atkinson, H.J. (1997). Resistance to both cyst- and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant Journal 12, 455-461.
  • Urwin, P.E., McPherson, M.J., & Atkinson, H.J., (1998). Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta , 204, 472-479.
  • Urwin, P.E., Levesley, A., McPherson, M.J., & Atkinson, H.J., (2000). Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding, 6, 257- 264.
  • Vai, P., Worland, B., Clarke, M.C., Richard, G., Beavis, M., Liu, H., Kohli, A., Leech, M., Snape, J., Christou, P., & Atkinson, H., (1998). Expression of an engineered cysteine proteinase inhibitor (OC-IΔD86) for nematode resistance in transgenic rice plants. Theoretical and Applied Genetics, 96, 266 271.
  • Valentine, T.A., Randall, E., Wypijewski, K., Chapman, S., Jones, J., & Oparka, K.J. (2007). Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnology Journal 5, 827–834.
  • Vishnudasan, D., Tripathi, M.N., Rao, U., Khurana, P. (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research 14, 665–675.
  • Waterhouse, P.M., Graham, M.W., & Wang, M.B., (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95, 13959–13964.
  • Wei, J.Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.C., & Aroian, R.V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings ofthe National Academy of Sciences, USA 100, 2760–2765.
  • Yadav, B.C., Veluthambi, K. & Subramaniam, K. (2006). Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Molecular and Biochemical Parasitology 148, 219– 222.

Bitki Paraziti Nematodlarla Mücadelede Biyoteknolojik Yaklaşımlar

Year 2021, Issue: 31, 706 - 712, 31.12.2021
https://doi.org/10.31590/ejosat.939277

Abstract

Dünya nüfusunun her geçen gün artması, tarımsal üretimden istenen yüksek verim beklentisini de artırmaktadır. Bu beklentinin karşılanması esnasında biyotik ve abiyotik faktörlere bağlı sorunlar ortaya çıkmaktadır. Biyotik faktörler içerisinde bulunan bitki paraziti nematodlar yıllık ortalama 125 milyon dolarlık ürün kaybı ile önemli bir yere sahiptir. Bitki paraziti nematodlarla mücadelede yaklaşık 8 milyon dolarlık pazara sahip kimyasal mücadele ilk sırada yer almaktadır. Kimyasal ilaçların çevreye, insanlara ve hedef alınmayan organizmalara olan olumsuz etkileri dolayısıyla yeni alternatif mücadele yöntemleri geliştirilmelidir. Son yıllarda biyoteknolojik yöntemler kullanılarak bitki paraziti nematodların kontrolü çalışmaları hızla artış göstermektedir. Bu metotlar nematodlara karşı doğal dayanıklıklar, bitki RNA’sının susturulması, proteinaz inhibitörlerinin kullanımı, lektinler aracılığı ile sağlanan dayanıklık ve Bacillus thuringiensis (Bt) Cry proteinleri aracılığı ile sağlanan dayanıklıklar şeklinde sıralanabilir. Bitki paraziti nematodları kontrol etmek için kullanılan bu yeni biyoteknolojik yöntemler kısa sürede yüksek verim ve kaliteli ürünler üretmek için kullanılabilmektedir. Bu çalışmada bitki paraziti nematodlarla mücadelede biyoteknolojik yaklaşımlar derlenmiştir.

References

  • Agrios, G.N. (2005). Plant pathology, Elsevier Academic Press pp. 825-874, USA.
  • Atkinson, H.J., Urwin, P.E. & Hussey, R.S. (2009). 15 Plant Biotechnology and Control.Root-knot nematodes, pp.338-362.
  • Baker, J.E., Fabrick, J.A., Kanost, M.R., Reeck, G.R., Kramer, K.J., & Behnke, C.A. (1997). Proteinase inhibitors and resistance of transgenic plants to insects. In Advances in insect control: the role of transgenic plants. CRC Press 1997.
  • Bakker, E., Achenbach, U., Bakker, J., Van Vliet, J., Peleman, J., Segers, B., der Heijden, S., Van der Linde, P., Graveland, R., Hutten, R., Van Eck, H., Coppoolse, E., Van der Vossen, E., Bakker, J., & Goverse, A. (2004). A highresolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics, 109,146–152.
  • Boag, B., & Yeates, G.W. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiversity and Conservation, 7(5), 617-630.
  • Burrows, P.R., & De Waele, D. (1997). Engineering resistance against plant parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA, eds. Cellular and molecular aspects of plant-nematode interactions. Dordrecht, the Netherlands: Kluwer Academic Press, pp. 217– 236.
  • Cai, D., Thurau, T., Tian, Y., Lange, T., Yeh, K.W., & Jung, C. (2003). Sporaminmediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Molecular Biology, 51(6), 839-849.
  • Cowgill, S.E., Wright, C. & Atkinson, H.J. (2002)a. Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids. Molecular Ecolology 11, 821–827.
  • Cowgill, S.E., Bardgett, R.D., Kiezebrink, D.T.& Atkinson, H.J. (2002)b. The effect of transgenic nematode resistance on nontarget organisms in the potato rhizosphere. Journal Applied Ecology 39, 915–923.
  • Cowgill, S.E., & Atkinson, H.J. (2003). A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insects. Transgenic Research 12, 439–449.
  • Cowgill, S.E., Danks, C., & Atkinson, H.J. (2004). Multitrophic interactions involving genetically modified potatoes, non-target aphids, natural enemies and hyperparasitoids. Molecular ecology, 13(3), 639-647.
  • Dağeri, A., Güz, N., & Gürkan, M.O. (2012). A New Approach to Insect Pest Management: RNA interference. Turkish Bulletin of Entomology, 2(3), 223-230.
  • de Majnik, J., Ogbonnaya, F.C., Moullet, O., & Lagudah, E.S. (2003). The Cre1 and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome. Molecular Plant-Microbe Interactions, 16(12), 1129-1134.
  • Dinh, P.T.Y., Brown, C.R., & Elling, A.A. (2014). RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology, 104, 1098–1106.
  • Fairbairn, D.J., Cavallaro, A.S., Bernard, M., Mahalinga-Iyer, J., Graham, M.W., & Botella, J.R. (2007). Host-delivered RNAi: an effective strategy to silencegenes in plant parasitic nematodes. Planta 226, 1525–1533.
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.
  • Fleming, C.C., McKinney, S., McMaster, S., Johnston, M.J.G., Donnelly, P., Kimber, M.J., & Maule, A.G. (2007). Getting to the root of neuronal signalling in plant-parasitic nematodes using RNA interference. Nematology 9, 301–315.
  • Fosu-Nyarko, J., & Jones, M.G.,(2015). Chapter Fourteen-Application of biotechnology for nematode control in crop plants. Advances in Botanical Research, 73, 339-376.
  • Freckman, D.W., & Baldwin, J.G., (1990). Nematoda. Soil biology guide. Wiley, New York, pp. 155-200.
  • Fuller, V.L., Lilley, C.J., Atkinson, H.J., & Urwin, P.E. (2007). Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molecular Plant Pathology. 8, 595–609.
  • Fuller, V.L., Lilley, C.J., & Urwin, P.E. (2008). Nematode resistance. New Phytologist, 180, 27-44.
  • Gheysen, G., & Vanholme, B. (2007). RNAi from plants to nematodes. Trends in Biotechnology, 25, 89–92.
  • Hamamouch, N., Li, C., Hewezi, T., Baum, T.J., Mitchum, M.G., Hussey, R.S., Vodkin, L.O., & Davis, E.L., (2012). The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3 endoglucanase may suppress host defence to promote parasitism. Journal of Experimental Botany, 63, 3683–3695.
  • Harris, R.F.(1981). Effect of water potential on microbial growth and activity. Water potential relations in soil microbiology, 23-95.
  • Hepher, A., & Atkinson, H.J. (1992). Nematode control with protease inhibitors. European Patent Publication. Number 0,502,730 A, 1.
  • Hilder, V.A., Gatehouse, A.M., Sheerman, S.E., Barker, R.F., & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 330(6144), 160-163.
  • Hohn, T. (2007). Plant virus transmission from the insect point of view. Proceedings of the National Academy of Sciences of the United States of America, 13, 104(46),17905-17906.
  • Huang, G.Z., Allen, R., Davis, E.L., Baum, T.J., & Hussey, R.S. (2006)a. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, USA 103,14302–14306.
  • Huang, G., Dong, R., Allen, R., Davis, E.L., Baum, T.J., & Hussey, R.S., (2006)b. A root-knot nematode secretory peptide functions as a ligand for aplant transcription factor. Molecular Plant–Microbe Interactions 19, 463–470.
  • Ibrahim, H. M., Hosseini, P., Alkharouf, N. W., Hussein, E. H., Abd El Kader, Y., Aly, M. A., & Matthews, B. F. (2011). Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC genomics, 12(1), 1-16.
  • ISAAA, 2021. International Service for the Acquisition of Agri-Biotech Applications (ISAAA) https://www.isaaa.org/ resources/publications/biotech_booklets/beyondpromises/download/default.asp [Erişim Tarihi: 04.04.2021]
  • James, C., (2014). Global Status of Commercialized Biotech. ISAAA No. Brief. 49. ISAAA: Ithaca, NY. 2014.
  • Jammes, F., Lecomte, P., de Almeida Engler, J., Bitton, F., Martin-Magninette, M.L., Renou, J.P., Favery, B., & Abad, P. (2005). Genome-wide expressionprofiling of the host response to root-knot nematode infection in Arabidopsis. Plant Journal 44, 447–458.
  • Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., & Napoli, C.A. (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Molecular Biology 31, 957–973.
  • Keen, N. (1999). Mechanisms of pest resistance in plants, pp. 33-36. Proceeding of A Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems (31 January-3 February, 1999, Bethesda, Maryland, USA), 131.
  • Kepenekci, İ. (2012). Nematoloji (Bitki Paraziti ve Entomopatojen Nematodlar) [Genel 4 Nematoloji (Cilt-I) ISBN 978-605-4672-11-0, Taksonomik Nematoloji (Cilt-II) 5 ISBN 978- 605-4672-12-7] Eğitim, Yayım ve Yayımlar Dairesi Başkanlığı, 6 Tarım Bilim Serisi Yayın No:3 (2012/3), LIV+1155.
  • Klink, V. P., Kim, K. H., Martins, V., MacDonald, M. H., Beard, H. S., Alkharouf, N. W., ... & Matthews, B. F. (2009). A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta, 230(1), 53-71.
  • Li, X.Q., Wei, J.Z., Tan, A., & Aroian, R.V. (2007). Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal 5, 455–464.
  • Lilley, C.J., Bakhetia, M., Charlton, W.L., & Urwin, P.E., (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 8, 701–711.
  • Lin, B., Zhuo, K., Wu, P., Cui, R., Zhang, L.H., & Liao, J., (2013). A novel effector protein, MJ-NULG1a, targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism. Molecular Plant-Microbe Interactions, 26, 55–66.
  • Lopes-Caitar, V.S., Pinheiro, J.B. & Marcelino-Guimaraes, F.C. (2019). Nematodes in horticulture: An overview. Journal of Horticultural Science and Crop Research, 1(1), 106.
  • Maggenti, A.R., (1991). Nemata: higher classification. Manual of Agricultural Nematology, Marcel Decker, New York, 147-187.
  • Marban-Mendoza, N., Jeyaprakash, A., Jansson, H.B., Damon, R.A., & Zuckerman, B.M. (1987). Control of root-knot nematodes on tomato by lectins. Journal of Nematology 19, 331–335.
  • Marroquin, L.D., Elyassnia, D., Griffitts, J.S., Feitelson, J.S., & Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155(4), 1693-1699.
  • Nicol, J.M., Turner, S.J., Coyne, D.L., Den Nijs, L., Hockland, S., & Maafi, Z.T. (2011). Current nematode threats to world agriculture. In Genomics and molecular genetics of plant-nematode interactions Springer Netherlands 21-43.
  • Ogbonnaya, F.C., Subrahmanyam, N.C., Moullet, O., De Majnik, J., Eagles, H.A., Brown, J.S., Eastwood, R.F., Kollmorgen, J., Appels, R., & Lagudah, E.S., (2001). Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Australian Journal of Agricultural Research, 52(12), 1367-1374.
  • Oka, Y., Chet, I., & Spiegel, Y. (1997). An immunoreactive protein to wheat-germ agglutinin antibody is induced in oat roots following invasion of the cereal cyst nematode Heterodera avenae, and by jasmonate. Molecular Plant–Microbe Interactions 10: 961-969.
  • Oka, Y. (2020). From Old-Generation to Next-Generation Nematicides. Agronomy, 10(9), 1387.
  • Öktem, H.A. (2001). Böceklere Dayanıklı Transgenik Bitkilerin Geliştirilmesi; Bitki Biyoteknolojisi Edt.; Sebahattin Özcan, Ekrem Gürel, Mehmet Babaoğlu, Türkiye.
  • Özcan, S. (2001). Bitki Biyoteknolojisi Edt.; Sebahattin Özcan, Ekrem Gürel, Mehmet Babaoğlu, Türkiye.
  • Patel, N., Hamamouch, N., Li, C., Hussey, R., Mitchum, M., Baum, T., Wang, X., & Davis, E.L. (2008). Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. Journal of Nematology, 40, 299–310.
  • Pekcan, G., Köksal, E., Küçükerdönmez, Ö., & Özel, H., (2006). Household food waste in Turkey. Statistics Division, Working Papers series NESS/ESSA/006e. Rome, FAO.
  • Perry, R.N., & Moens, M., (2006). Ectoparasitic Nematodes, Plant Nematology CABI, Belgium 266–271.
  • Peumans, W.J., & Van Damme, E.J.M. (1995). Lectins as plant defense proteins. Plant Physiology, 109: 347–352.
  • Ryan, C.A. (1990). Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual review of phytopathology, 28(1), 425-449.
  • Sindhu, A.S., Maier, T.R., Mitchum, M.G., Hussey, R.S., Davis, E.L., & Baum, T.J. (2009). Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. Journal of Experimental Botany, 60, 315–324.
  • Steeves, R.M., Todd, T.C., Essig, J.S., & Trick, H.N. (2006). Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress. Heterodera glycines reproduction. Functional Plant Biology 33, 991–999.
  • Thorne, G. (1961). Principles of Nematology. Principles of Nematology 1961.
  • Thurau, T., Ye, W., & Cai, D. (2010). Insect and nematode resistance. In Genetic Modification of Plants Springer Berlin Heidelberg. 177-197.
  • Toros, S., Maden, S., & Sözeri, S. (1991). Tarımsal Savaşım Yöntem ve İlaçları. Ankara Üniversitesi Ziraat Fakültesi Yay, 1222.
  • Urwin, P.E., Lilley, C.J., McPherson, M.J., Atkinson, H.J. (1997). Resistance to both cyst- and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant Journal 12, 455-461.
  • Urwin, P.E., McPherson, M.J., & Atkinson, H.J., (1998). Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta , 204, 472-479.
  • Urwin, P.E., Levesley, A., McPherson, M.J., & Atkinson, H.J., (2000). Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding, 6, 257- 264.
  • Vai, P., Worland, B., Clarke, M.C., Richard, G., Beavis, M., Liu, H., Kohli, A., Leech, M., Snape, J., Christou, P., & Atkinson, H., (1998). Expression of an engineered cysteine proteinase inhibitor (OC-IΔD86) for nematode resistance in transgenic rice plants. Theoretical and Applied Genetics, 96, 266 271.
  • Valentine, T.A., Randall, E., Wypijewski, K., Chapman, S., Jones, J., & Oparka, K.J. (2007). Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnology Journal 5, 827–834.
  • Vishnudasan, D., Tripathi, M.N., Rao, U., Khurana, P. (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research 14, 665–675.
  • Waterhouse, P.M., Graham, M.W., & Wang, M.B., (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95, 13959–13964.
  • Wei, J.Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.C., & Aroian, R.V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings ofthe National Academy of Sciences, USA 100, 2760–2765.
  • Yadav, B.C., Veluthambi, K. & Subramaniam, K. (2006). Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Molecular and Biochemical Parasitology 148, 219– 222.
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeliha Şahin 0000-0002-9063-4474

Didem Saglam Altinkoy 0000-0001-8925-1305

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Şahin, Z., & Saglam Altinkoy, D. (2021). Bitki Paraziti Nematodlarla Mücadelede Biyoteknolojik Yaklaşımlar. Avrupa Bilim Ve Teknoloji Dergisi(31), 706-712. https://doi.org/10.31590/ejosat.939277