Research Article
BibTex RIS Cite

Ateş Tuğlası Parçalarının Güneş Enerjili Hava Isıtıcılarında Isıl Enerji Depolama Malzemesi Olarak Kullanılmasının Isıl Verimliliğine Etkisi

Year 2021, Issue: 31, 358 - 364, 31.12.2021
https://doi.org/10.31590/ejosat.997956

Abstract

Tarım ürünlerinin kurutulması ve mekân ısıtması gibi uygulamalarda ihtiyaç duyulan sıcak hava, hava ısıtıcılı güneş kollektörleri ile elde edilebilmektedir. Suya göre, havanın ısı transfer katsayısı daha düşüktür. Bu sebeple hava ısıtıcılı güneş kollektörlerinde yüzey alanı artırılmış depolama malzemeleri kullanılarak hem daha yüksek sıcaklıklarda hava elde edebilmekte hem de enerjinin depolanması sağlanarak kollektörün toplam verimi artırılabilmektedir. Ateş tuğlaları gibi yüksek sıcaklıklara dayanıklı malzemeler, düşük ısı iletkenliğine ve yüksek ısı kapasitelerine sahiptirler. Bu çalışmada, depolama ve ısıl enerjinin tekrar kullanımında bir tür refrakter olan ateş tuğlasına ait parçalar kollektör içerisine yerleştirilerek, kollektörün verimi üzerine etkileri incelenmiştir. Hava ısıtıcılı güneş kollektörüne farklı miktarlarda ateş tuğlası parçaları uygulanmış, ışınım altında ve soğutma sırasında ısıl verimleri karşılaştırılmıştır.

References

  • S. A. Kalogirou, “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, vol. 30, pp. 231-295, 2004.
  • A. L. Bonnette and Xenophon, Memorabilia, Cornell University Press, 2014.
  • Evangelisti, L., Vollaro, R.D.L., Asdrubali, F., 2019. Latest advances on solar thermalcollectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318.
  • K. B. Varınca and M. T. Gönüllü, “Türkiye’de Güneş Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlığı Üzerine Bir Araştırma”, I. Ulusal Güneş ve Hidrojen Enerjisi Kongresi UGHEK 2006, ESOGÜ, Eskişehir, 270-275, (2006).
  • A. Kumar, R. P. Saini and J. S. Saini, “A review of thermohydraulic performance of artificially roughened solar air heaters”, Renewable and Sustainable Energy Reviews, vol. 37, pp. 100-122, 2014.
  • A. Ghiami and S. Ghiami, “Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector”, Applied Thermal Engineering, vol. 133, pp. 797-808, 2018.
  • M. K. Selçuk, “Solar Air Heaters and Their Applications”, Solar Energy Engineering, Chapter 8, pp. 155-182, 1977.
  • P. S. Bhambare and G. V. Parishwad, “Study of Medium Temperature Solar Thermal Applications”, International Journal of Applied Research and Studies, vol. 2, no 5, pp. 1-11, 2013.
  • Haldorai S, Gurusamy S, Pradhapraj M. A review on thermal energy storage systems in solar air heaters.Int J Energy Res.2019;43:6061-6077.
  • Javadi F.S., Metselaar H.S.C., Ganesan P., 2020. Performance improvement of solar thermal systems integrated with phase change materials (PCM), A review. Solar Energy, 206, 330-352.
  • Kalairasi G., Velraj R., Van jeswaran M.N., Pardian N.G., 2020. Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage. Renewable Energy, 150, 255-265.
  • Gautam A., Saini R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy, 207, 937-956.
  • T. Tanaka, T. Tani, S. Sawata, K. Sakuta and T. Horigome, “Fundamental studies on heat storage of solar energy”, Solar Energy, vol. 19, pp. 415-419, 1976.
  • C. Choudhury, P. M. Chauhan and H.P. Garg, “Economic Design of a Rock Bed Storage Device for Storing Solar Thermal Energy”, Solar Energy, vol. 55, no 1, pp. 29-37, 1995.
  • I. Sarbu and C. Sebarchievici, “A Comprehensive Review of Thermal Energy Storage”, Sustainability, vol. 10, no 1, p. 191, 2018.
  • A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zelba and L. F. Cabeza, “State of the art on high temperature thermal energy storage for power generation”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 31-55, 2010.
  • J. Gasia, L. Miró and L. F. Cabeza, “Review on system and material requirements for high temperature thermal energy storage.”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 1320-1338, 2017.
  • J. Singh, R. Singh and B. Bhushan, “Thermo Hyraulic Performance of Solar Air Duct Having Triangular Protrusions as Roughness Geometry”, Journal of Thermal Engineering, vol. 1, no 7, pp. 607-620, 2015.
  • S. A. Nagalkar, A. B. Kanase-Patil and N. A. Phadtare, “Heat Transfer Enhancement in Solar Air Heater having Multi-Arc Shape Artificial Roughness with gap”, International Conference on Technologies for Sustainable Development ICTSD 2015, Mumbai, India, (2015).
  • Mehmet Şener, “Etkin Bir Havalı Güneş Kollektörünün Tasarımı ve Optimizasyonu”, Yüksek Lisans Tezi, Hitit Üniversitesi Fen Bilimleri Enstitüsü, Çorum, 2013.
  • Kumru Güreşçi, “Isı Alıcıların Kanal Akışında Isı ve Akış Karakteristiklerinin Sayısal Olarak İncelenmesi”, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 2014.
  • Saravanakumar, P.T., Mayilsamy, K., Forced convection flat plate solar air heaters with and without thermal storage. Journal of Scientific & Industrial Research, Vol. 69, pp. 966-968, 2010.
  • Natarajan, K., Thokchom, S.S., Verma, T.N., Nashine, P., Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renewable Energy, Vol. 113, pp. 1193-1200, 2017.
  • Singh, T.S., Verma, T.N., Jahiya, M., Singh, P.K., Kheiruddin, M., Ajitkumar, K., Singh, N.W., Singh, H.D., Forced Convective Solar Air Heater: Effect of Thermal Storage Materials. International Journal of Applied Engineering Research, 13(8), pp.5877-5880, 2018.
  • Devlet Planlama Teşkilatı, Sekizinci Beş Yıllık Kalkınma Planı, “Taş ve Toprağa Dayalı Ürünlerin Sanayii Özel İhtisas Komisyonu Raporu (Refrakter), Ankara, 2001.
  • Yuansheng Pei, “Design of an LED-Based Solar Simulator”, Honour thesis, Murdoch University, Perth, Western Australia, 2017.
  • A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroger, P. S. Shenoy and P. T. Krein, “Solid-State Solar Simulator”, IEEE Transactions on Industry Applications, vol. 48, no 4, pp. 1195-1202, 2012.
  • R. V. Parupudi, H. Singh and M. Kolokotroni, “Sun Simulator for Indoor Performance assessment of Solar Photovoltaic Cells”, Energy Procedia, vol. 161, pp. 376-384, 2019.
  • Salih SM, Jalil JM, Najim SE. Experimental and numerical analysis of double-passsolar air heater utilizing multiple capsules PCM. Renewable Energy 2019; 143:1053–66
  • Aboul-Enein, S., El-Sebaii, A.A., Ramadan, M.R.I, El-Gohary, H.G., Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renewable Energy, 21, pp.505-522, 2000.
  • Krishnananth, S.S., and Murugavel, K.K., Experimental study on double pass solar air heater with thermal energy storage. Journal of King Saud University – Engineering Sciences, 25, pp.135-140, 2013.
  • Saxena A., Verma P., Srivastava G., Kishore N. Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Applied Thermal engineering, 167, 114768.
  • Sajawal M., Rahman T., Ali H.M., Sajjad U., Raza A., Bhatti M.S., 2019. Experimental thermal performance analysis of finned tube phase change material based double pass solar air heater. Case Studies in Thermal Engineering, 15, 100543.
  • Sunilraj B.A., Esmaramoorthy M., 2020. Experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage. Material Today: Proceeding 23, 49-52.
  • Vijayan S., Arjunan T.V., Kumar A., Mortheswaran M.M. Journal of Energy Storage, 31, 101620.
  • Sudhakar P, Cheralathan M. Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin-fins for drying agricultural products: an experimental study. J Therm Anal Calorim 2020;140: 2397–408. https://doi.org/10.1007/s10973-019-08952-9.
  • O. Ojike, W.I. Okonkwo, Study of a passive solar air heater using palm oil and paraffin as storage media, Case Stud. Therm. Eng. 14 (2019), https://doi.org/10.1016/j.csite.2019.100454.
  • W. Baig, H.M. Ali, An experimental investigation of performance of a double pass solar air heater with foam aluminum thermal storage medium, Case Studies in Thermal Engineering 14 (2019) 100440.
  • Bubnovich V, Reyes A, Díaz M. Computational simulation of the thermal performance of a solar air heater integrated with a phase change. Material. J Sol Energy Eng 2019;141(5):051011. https://doi.org/10.1115/1.4043549.
  • Abuşka M., Şevik S., Kayapunar A. Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder. Renew Energy 2019; 143: 34–46. https://doi.org/10.1016/j.renene.2019.04.149.
  • A.R. Abdulmunem, A.H. Abed, H.A. Hussien, P.M. Samin, H.A. Rahman,Improving the performance of solar air heater using high thermal storagematerials, Ann. Chimie Sci. Materiaux 43 (6) (2019) 389e394,https://doi.org/10.18280/acsm.430605.

The Effect of Using the Fire-brick Fragments as a Thermal Energy Storage Material on Thermal Efficiency of Solar Air Heater

Year 2021, Issue: 31, 358 - 364, 31.12.2021
https://doi.org/10.31590/ejosat.997956

Abstract

The hot air needed in applications such as drying agricultural products and space heating can be obtained with air-heated solar collectors. Air has a lower heat transfer coefficient than water. Using storage materials with increased surface area in air-heated solar collectors provides both obtaining higher temperatures output air and increased the total efficiency of the collector by storing energy. Refractory materials such as fire bricks have low thermal conductivity and high thermal capacities. In this study, the effects of refractory fire-brick fragments which are a kind of refractory in storage and reuse of thermal energy on collector efficiency were investigated. Fire brick fragments of different densities were applied into the solar air heater collector and their thermal efficiencies were compared during under radiation and cooling.

References

  • S. A. Kalogirou, “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, vol. 30, pp. 231-295, 2004.
  • A. L. Bonnette and Xenophon, Memorabilia, Cornell University Press, 2014.
  • Evangelisti, L., Vollaro, R.D.L., Asdrubali, F., 2019. Latest advances on solar thermalcollectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318.
  • K. B. Varınca and M. T. Gönüllü, “Türkiye’de Güneş Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlığı Üzerine Bir Araştırma”, I. Ulusal Güneş ve Hidrojen Enerjisi Kongresi UGHEK 2006, ESOGÜ, Eskişehir, 270-275, (2006).
  • A. Kumar, R. P. Saini and J. S. Saini, “A review of thermohydraulic performance of artificially roughened solar air heaters”, Renewable and Sustainable Energy Reviews, vol. 37, pp. 100-122, 2014.
  • A. Ghiami and S. Ghiami, “Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector”, Applied Thermal Engineering, vol. 133, pp. 797-808, 2018.
  • M. K. Selçuk, “Solar Air Heaters and Their Applications”, Solar Energy Engineering, Chapter 8, pp. 155-182, 1977.
  • P. S. Bhambare and G. V. Parishwad, “Study of Medium Temperature Solar Thermal Applications”, International Journal of Applied Research and Studies, vol. 2, no 5, pp. 1-11, 2013.
  • Haldorai S, Gurusamy S, Pradhapraj M. A review on thermal energy storage systems in solar air heaters.Int J Energy Res.2019;43:6061-6077.
  • Javadi F.S., Metselaar H.S.C., Ganesan P., 2020. Performance improvement of solar thermal systems integrated with phase change materials (PCM), A review. Solar Energy, 206, 330-352.
  • Kalairasi G., Velraj R., Van jeswaran M.N., Pardian N.G., 2020. Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage. Renewable Energy, 150, 255-265.
  • Gautam A., Saini R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy, 207, 937-956.
  • T. Tanaka, T. Tani, S. Sawata, K. Sakuta and T. Horigome, “Fundamental studies on heat storage of solar energy”, Solar Energy, vol. 19, pp. 415-419, 1976.
  • C. Choudhury, P. M. Chauhan and H.P. Garg, “Economic Design of a Rock Bed Storage Device for Storing Solar Thermal Energy”, Solar Energy, vol. 55, no 1, pp. 29-37, 1995.
  • I. Sarbu and C. Sebarchievici, “A Comprehensive Review of Thermal Energy Storage”, Sustainability, vol. 10, no 1, p. 191, 2018.
  • A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zelba and L. F. Cabeza, “State of the art on high temperature thermal energy storage for power generation”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 31-55, 2010.
  • J. Gasia, L. Miró and L. F. Cabeza, “Review on system and material requirements for high temperature thermal energy storage.”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 1320-1338, 2017.
  • J. Singh, R. Singh and B. Bhushan, “Thermo Hyraulic Performance of Solar Air Duct Having Triangular Protrusions as Roughness Geometry”, Journal of Thermal Engineering, vol. 1, no 7, pp. 607-620, 2015.
  • S. A. Nagalkar, A. B. Kanase-Patil and N. A. Phadtare, “Heat Transfer Enhancement in Solar Air Heater having Multi-Arc Shape Artificial Roughness with gap”, International Conference on Technologies for Sustainable Development ICTSD 2015, Mumbai, India, (2015).
  • Mehmet Şener, “Etkin Bir Havalı Güneş Kollektörünün Tasarımı ve Optimizasyonu”, Yüksek Lisans Tezi, Hitit Üniversitesi Fen Bilimleri Enstitüsü, Çorum, 2013.
  • Kumru Güreşçi, “Isı Alıcıların Kanal Akışında Isı ve Akış Karakteristiklerinin Sayısal Olarak İncelenmesi”, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 2014.
  • Saravanakumar, P.T., Mayilsamy, K., Forced convection flat plate solar air heaters with and without thermal storage. Journal of Scientific & Industrial Research, Vol. 69, pp. 966-968, 2010.
  • Natarajan, K., Thokchom, S.S., Verma, T.N., Nashine, P., Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renewable Energy, Vol. 113, pp. 1193-1200, 2017.
  • Singh, T.S., Verma, T.N., Jahiya, M., Singh, P.K., Kheiruddin, M., Ajitkumar, K., Singh, N.W., Singh, H.D., Forced Convective Solar Air Heater: Effect of Thermal Storage Materials. International Journal of Applied Engineering Research, 13(8), pp.5877-5880, 2018.
  • Devlet Planlama Teşkilatı, Sekizinci Beş Yıllık Kalkınma Planı, “Taş ve Toprağa Dayalı Ürünlerin Sanayii Özel İhtisas Komisyonu Raporu (Refrakter), Ankara, 2001.
  • Yuansheng Pei, “Design of an LED-Based Solar Simulator”, Honour thesis, Murdoch University, Perth, Western Australia, 2017.
  • A. M. Bazzi, Z. Klein, M. Sweeney, K. P. Kroger, P. S. Shenoy and P. T. Krein, “Solid-State Solar Simulator”, IEEE Transactions on Industry Applications, vol. 48, no 4, pp. 1195-1202, 2012.
  • R. V. Parupudi, H. Singh and M. Kolokotroni, “Sun Simulator for Indoor Performance assessment of Solar Photovoltaic Cells”, Energy Procedia, vol. 161, pp. 376-384, 2019.
  • Salih SM, Jalil JM, Najim SE. Experimental and numerical analysis of double-passsolar air heater utilizing multiple capsules PCM. Renewable Energy 2019; 143:1053–66
  • Aboul-Enein, S., El-Sebaii, A.A., Ramadan, M.R.I, El-Gohary, H.G., Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renewable Energy, 21, pp.505-522, 2000.
  • Krishnananth, S.S., and Murugavel, K.K., Experimental study on double pass solar air heater with thermal energy storage. Journal of King Saud University – Engineering Sciences, 25, pp.135-140, 2013.
  • Saxena A., Verma P., Srivastava G., Kishore N. Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Applied Thermal engineering, 167, 114768.
  • Sajawal M., Rahman T., Ali H.M., Sajjad U., Raza A., Bhatti M.S., 2019. Experimental thermal performance analysis of finned tube phase change material based double pass solar air heater. Case Studies in Thermal Engineering, 15, 100543.
  • Sunilraj B.A., Esmaramoorthy M., 2020. Experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage. Material Today: Proceeding 23, 49-52.
  • Vijayan S., Arjunan T.V., Kumar A., Mortheswaran M.M. Journal of Energy Storage, 31, 101620.
  • Sudhakar P, Cheralathan M. Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin-fins for drying agricultural products: an experimental study. J Therm Anal Calorim 2020;140: 2397–408. https://doi.org/10.1007/s10973-019-08952-9.
  • O. Ojike, W.I. Okonkwo, Study of a passive solar air heater using palm oil and paraffin as storage media, Case Stud. Therm. Eng. 14 (2019), https://doi.org/10.1016/j.csite.2019.100454.
  • W. Baig, H.M. Ali, An experimental investigation of performance of a double pass solar air heater with foam aluminum thermal storage medium, Case Studies in Thermal Engineering 14 (2019) 100440.
  • Bubnovich V, Reyes A, Díaz M. Computational simulation of the thermal performance of a solar air heater integrated with a phase change. Material. J Sol Energy Eng 2019;141(5):051011. https://doi.org/10.1115/1.4043549.
  • Abuşka M., Şevik S., Kayapunar A. Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder. Renew Energy 2019; 143: 34–46. https://doi.org/10.1016/j.renene.2019.04.149.
  • A.R. Abdulmunem, A.H. Abed, H.A. Hussien, P.M. Samin, H.A. Rahman,Improving the performance of solar air heater using high thermal storagematerials, Ann. Chimie Sci. Materiaux 43 (6) (2019) 389e394,https://doi.org/10.18280/acsm.430605.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Süslü 0000-0003-4016-589X

Recep Külcü 0000-0002-7185-6514

Can Ertekin 0000-0003-2987-2438

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Süslü, A., Külcü, R., & Ertekin, C. (2021). The Effect of Using the Fire-brick Fragments as a Thermal Energy Storage Material on Thermal Efficiency of Solar Air Heater. Avrupa Bilim Ve Teknoloji Dergisi(31), 358-364. https://doi.org/10.31590/ejosat.997956