Research Article
BibTex RIS Cite

Güneş Damıtıcıları Kullanımı ile Atmosfer Havasından İçilebilir Su Çıkarılması Üzerine Literatür İncelemesi: Son Gelişmeler

Year 2021, Issue: 32, 991 - 999, 31.12.2021
https://doi.org/10.31590/ejosat.1039866

Abstract

İçme suyu ve kullanma suyu, içme, yemek pişirme ve temizlik başta olmak üzere pek çok yaşamsal ihtiyaçların karşılanmasında vazgeçilmez bir unsurdur. Bilinçsiz tarımsal sulama, kirlilik ve nüfus artışı insanlığın baş etmek zorunda kaldığı su kıtlığına neden olmaktadır. Küresel ısınma ve iklim değişikliği sonucu özellikle içilebilir su miktarı azalmaktadır ve temiz su kaynaklarına erişimi zorlaştırmaktadır. İçme suyu kaynaklarının doluluğu yüksek sıcaklığın yaşandığı mevsimlerde azalmakta ve hatta bir kısmı yok olmaktadır. Bu durum içme suyu elde etmek için alternatif yöntemlerin araştırılmasını zorunlu hale getirmiştir. Bu yöntemlerden biri, yüksek miktarlarda su içeren atmosfer havasından içilebilir su elde edilmesidir. Bu yöntemin yaygın olarak kullanılması sayesinde içme suyu kıtlığı belirli ölçüde giderilebilir. Bu çalışmada, yenilenebilir enerji kaynağı olan güneş enerjisi kullanılarak atmosferik havadaki suyun yoğuşturulması ve böylelikle içilebilir suyun elde edilmesi prosesleri tartışılmıştır. Çeşitli absorbanlar kullanılarak ve çeşitli sistemsel güneş kurutucuları tasarımları sayesinde içilebilir suyu elde etme verimliliğini artırma çabalarının olumlu sonuçlar vermiştir. Yapılan bu literatür incelemesi sonucunda, yapılan çalışmaların sınırları ve bölgesel etkililikleri birlikte değerlendirilmiştir. Atmosfer havasının sıcaklı, hız, nem oranı ve de güneş ışınım miktarının prosese etkisi değerlendirilmiştir. Kalsiyum Klorür ve silika jel gibi iyi su absorberleri olan belirli kurutucu malzemelerin doğru tasarımlar geliştirilerek atmosfer havasından içilebilir su elde etme proseslerinde etkin olarak kullanılabileceği sonucuna varılmıştır. Su kıtlığının önemli bir nedeni olan yüksek atmosfer havası sıcaklığın güneş enerjisinden faydalanılarak dezavantajdan avantaja dönüştürülebileceği ortaya konmuştur.

References

  • Abualhamayel, H., & Gandhidasan, P. (1997). A method of obtaining fresh water from the humid atmosphere. Desalination, 113(1), 51-63.
  • Alayli, Y., Hadji, N., & Leblond, J. (1987). A new process for the extraction of water from air. Desalination, 67, 227-229.
  • Aristov, Y. I., Tokarev, M., Gordeeva, L., Snytnikov, V., & Parmon, V. (1999). New composite sorbents for solar-driven technology of freshwater production from the atmosphere. Solar Energy, 66(2), 165-168.
  • Bardi, U. (2008). Fresh water production by means of solar concentration: the AQUASOLIS project. Desalination, 220(1-3), 588-591.
  • Elashmawy, M. (2020). Experimental study on water extraction from atmospheric air using tubular solar still. Journal of Cleaner Production, 249, 119322.
  • Elashmawy, M., & Alshammari, F. (2020). Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. Journal of Cleaner Production, 256, 120329.
  • Essa, F., Elsheikh, A. H., Sathyamurthy, R., Manokar, A. M., Kandeal, A., Shanmugan, S., . . . Younes, M. (2020). Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions. Sustainable Energy Technologies and Assessments, 39, 100712.
  • Fathy, M. H., Awad, M. M., Zeidan, E.-S. B., & Hamed, A. M. (2020). Solar powered foldable apparatus for extracting water from atmospheric air. Renewable energy, 162, 1462-1489.
  • Gad, H., Hamed, A., & El-Sharkawy, I. (2001). Application of a solar desiccant/collector system for water recovery from atmospheric air. Renewable energy, 22(4), 541-556.
  • Gandhidasan, P., & Abualhamayel, H. (1996). Water recovery from the atmosphere. Renewable energy, 9(1-4), 745-748.
  • Gandhidasan, P., & Abualhamayel, H. (2010). Investigation of humidity harvest as an alternative water source in the Kingdom of Saudi Arabia. Water and Environment Journal, 24(4), 282-292.
  • Gordeeva, L. G., Solovyeva, M. V., Sapienza, A., & Aristov, Y. I. (2020). Potable water extraction from the atmosphere: Potential of MOFs. Renewable energy, 148, 72-80.
  • Hall, R. C. (1966). Theoretical calculations on the production of water from the atmosphere by absorption with subsequent recovery in a solar still. Solar Energy, 10(1), 41-45.
  • Hamed, A. (2003). Experimental investigation on the natural absorption on the surface of sandy layer impregnated with liquid desiccant. Renewable energy, 28(10), 1587-1596.
  • Hamed, A. M., Aly, A. A., & Zeidan, E.-S. B. (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(01), 8.
  • Hamed, A. M., Kabeel, A., Zeidan, E.-S. B., & Aly, A. A. (2010). A technical review on the extraction of water from atmospheric air in arid zones. Int. J. Heat Mass Trans, 4, 213-228.
  • Ji, J., Wang, R., & Li, L. (2007). New composite adsorbent for solar-driven freshwater production from the atmosphere. Desalination, 212(1-3), 176-182.
  • Kabeel, A. (2004). Application of sandy bed solar collector system for extraction of water from air. Paper presented at the 8th International Water Technology Conference.
  • Kabeel, A. (2007). Water production from air using multi-shelves solar glass pyramid system. Renewable energy, 32(1), 157-172.
  • Kabeel, A., Abdulaziz, M., & El-Said, E. M. (2016). Solar-based atmospheric water generator utilisation of a freshwater recovery: A numerical study. International Journal of Ambient Energy, 37(1), 68-75.
  • Kim, H., Rao, S. R., Kapustin, E. A., Zhao, L., Yang, S., Yaghi, O. M., & Wang, E. N. (2018). Adsorption-based atmospheric water harvesting device for arid climates. Nature communications, 9(1), 1-8.
  • Kumar, M., & Yadav, A. (2015). Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air. Journal of Renewable and Sustainable Energy, 7(3), 033122.
  • Kumar, M., & Yadav, A. (2016). Solar-driven technology for freshwater production from atmospheric air by using the composite desiccant material “CaCl 2/floral foam”. Environment, Development and Sustainability, 18(4), 1151-1165.
  • Kumar, M., & Yadav, A. (2017). Composite desiccant material “CaCl 2/Vermiculite/Saw wood”: a new material for freshwater production from atmospheric air. Applied Water Science, 7(5), 2103-2111.
  • Kumar, M., Yadav, A., & Mehla, N. (2019). Water generation from atmospheric air by using different composite desiccant materials. International Journal of Ambient Energy, 40(4), 343-349.
  • Kumar, P. M., Arunthathi, S., Prasanth, S. J., Aswin, T., Antony, A. A., Daniel, D., . . . Babu, P. N. (2021). Investigation on a desiccant based solar water recuperator for generating water from atmospheric air. Materials Today: Proceedings, 45, 7881-7884.
  • Li, R., Shi, Y., Alsaedi, M., Wu, M., Shi, L., & Wang, P. (2018). Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environmental science & technology, 52(19), 11367-11377.
  • Manoj, K., & Avadhesh, Y. (2015). Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material" CaCl2/saw wood". Desalination, 367, 216-222.
  • Mohamed, M., William, G., & Fatouh, M. (2017). Solar energy utilization in water production from humid air. Solar Energy, 148, 98-109.
  • Mulchandani, A., Malinda, S., Edberg, J., & Westerhoff, P. (2020). Sunlight-driven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants. Environmental Science: Nano, 7(9), 2584-2594.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R., & Asadollahzadeh, M. (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable and Sustainable Energy Reviews, 120, 109627.
  • Scrivani, A., El Asmar, T., & Bardi, U. (2007). Solar trough concentration for freshwater production and wastewater treatment. Desalination, 206(1-3), 485-493.
  • Srivastava, S., & Yadav, A. (2018). Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Solar Energy, 169, 302-315.
  • Talaat, M., Awad, M., Zeidan, E., & Hamed, A. (2018). Solar-powered portable apparatus for extracting water from air using desiccant solution. Renewable energy, 119, 662-674.
  • Wang, J., Liu, J., Wang, R., & Wang, L. (2017). Experimental investigation on two solar-driven sorption-based devices to extract fresh water from atmosphere. Applied Thermal Engineering, 127, 1608-1616.
  • Wang, J., Wang, R., Wang, L., & Liu, J. (2017). A high efficient semi-open system for fresh water production from atmosphere. Energy, 138, 542-551.
  • William, G. E., Mohamed, M., & Fatouh, M. (2015). Desiccant system for water production from humid air using solar energy. Energy, 90, 1707-1720.
  • Zhao, F., Zhou, X., Liu, Y., Shi, Y., Dai, Y., & Yu, G. (2019). Super moisture‐absorbent gels for all‐weather atmospheric water harvesting. Advanced Materials, 31(10), 1806446.

A Literature Review on Extraction of Potable Water from Atmospheric Air Using Solar Stills: Recent Developments

Year 2021, Issue: 32, 991 - 999, 31.12.2021
https://doi.org/10.31590/ejosat.1039866

Abstract

Drinking water and utility water are indispensable elements in meeting many vital needs, especially drinking, cooking and cleaning. Unconscious agricultural irrigation, pollution, and population growth cause water scarcity that humanity must cope with. As a result of global warming and climate change, especially the amount of potable water is decreasing, making it difficult to access clean water resources. The occupancy of drinking water sources decreases in high temperature seasons and some of them even disappear. This situation has made it necessary to search for alternative methods to obtain drinking water. One of these methods is to obtain potable water from atmospheric air containing high amounts of water. With the widespread use of this method, the scarcity of drinking water can be alleviated to a certain extent. In this study, the processes of condensing the water in the atmospheric air by using solar energy, which is a renewable energy source, and thus obtaining potable water are discussed. Efforts to increase the efficiency of obtaining potable water by using various absorbents and by various systemic solar still designs have yielded positive results. As a result of this literature review, the limits of the studies and their regional effectiveness were evaluated together. The effect of temperature, velocity, humidity of the atmospheric air and the amount of solar radiation on the process were evaluated. It has been concluded that certain desiccant materials with good water absorbers such as calcium chloride and silica gel can be used effectively in the processes of obtaining potable water from atmospheric air by developing correct designs. It has been demonstrated that high atmospheric air temperature, which is an important cause of water scarcity, can be converted from disadvantage to advantage by utilizing solar energy.

References

  • Abualhamayel, H., & Gandhidasan, P. (1997). A method of obtaining fresh water from the humid atmosphere. Desalination, 113(1), 51-63.
  • Alayli, Y., Hadji, N., & Leblond, J. (1987). A new process for the extraction of water from air. Desalination, 67, 227-229.
  • Aristov, Y. I., Tokarev, M., Gordeeva, L., Snytnikov, V., & Parmon, V. (1999). New composite sorbents for solar-driven technology of freshwater production from the atmosphere. Solar Energy, 66(2), 165-168.
  • Bardi, U. (2008). Fresh water production by means of solar concentration: the AQUASOLIS project. Desalination, 220(1-3), 588-591.
  • Elashmawy, M. (2020). Experimental study on water extraction from atmospheric air using tubular solar still. Journal of Cleaner Production, 249, 119322.
  • Elashmawy, M., & Alshammari, F. (2020). Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. Journal of Cleaner Production, 256, 120329.
  • Essa, F., Elsheikh, A. H., Sathyamurthy, R., Manokar, A. M., Kandeal, A., Shanmugan, S., . . . Younes, M. (2020). Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions. Sustainable Energy Technologies and Assessments, 39, 100712.
  • Fathy, M. H., Awad, M. M., Zeidan, E.-S. B., & Hamed, A. M. (2020). Solar powered foldable apparatus for extracting water from atmospheric air. Renewable energy, 162, 1462-1489.
  • Gad, H., Hamed, A., & El-Sharkawy, I. (2001). Application of a solar desiccant/collector system for water recovery from atmospheric air. Renewable energy, 22(4), 541-556.
  • Gandhidasan, P., & Abualhamayel, H. (1996). Water recovery from the atmosphere. Renewable energy, 9(1-4), 745-748.
  • Gandhidasan, P., & Abualhamayel, H. (2010). Investigation of humidity harvest as an alternative water source in the Kingdom of Saudi Arabia. Water and Environment Journal, 24(4), 282-292.
  • Gordeeva, L. G., Solovyeva, M. V., Sapienza, A., & Aristov, Y. I. (2020). Potable water extraction from the atmosphere: Potential of MOFs. Renewable energy, 148, 72-80.
  • Hall, R. C. (1966). Theoretical calculations on the production of water from the atmosphere by absorption with subsequent recovery in a solar still. Solar Energy, 10(1), 41-45.
  • Hamed, A. (2003). Experimental investigation on the natural absorption on the surface of sandy layer impregnated with liquid desiccant. Renewable energy, 28(10), 1587-1596.
  • Hamed, A. M., Aly, A. A., & Zeidan, E.-S. B. (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia. Natural Resources, 2(01), 8.
  • Hamed, A. M., Kabeel, A., Zeidan, E.-S. B., & Aly, A. A. (2010). A technical review on the extraction of water from atmospheric air in arid zones. Int. J. Heat Mass Trans, 4, 213-228.
  • Ji, J., Wang, R., & Li, L. (2007). New composite adsorbent for solar-driven freshwater production from the atmosphere. Desalination, 212(1-3), 176-182.
  • Kabeel, A. (2004). Application of sandy bed solar collector system for extraction of water from air. Paper presented at the 8th International Water Technology Conference.
  • Kabeel, A. (2007). Water production from air using multi-shelves solar glass pyramid system. Renewable energy, 32(1), 157-172.
  • Kabeel, A., Abdulaziz, M., & El-Said, E. M. (2016). Solar-based atmospheric water generator utilisation of a freshwater recovery: A numerical study. International Journal of Ambient Energy, 37(1), 68-75.
  • Kim, H., Rao, S. R., Kapustin, E. A., Zhao, L., Yang, S., Yaghi, O. M., & Wang, E. N. (2018). Adsorption-based atmospheric water harvesting device for arid climates. Nature communications, 9(1), 1-8.
  • Kumar, M., & Yadav, A. (2015). Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air. Journal of Renewable and Sustainable Energy, 7(3), 033122.
  • Kumar, M., & Yadav, A. (2016). Solar-driven technology for freshwater production from atmospheric air by using the composite desiccant material “CaCl 2/floral foam”. Environment, Development and Sustainability, 18(4), 1151-1165.
  • Kumar, M., & Yadav, A. (2017). Composite desiccant material “CaCl 2/Vermiculite/Saw wood”: a new material for freshwater production from atmospheric air. Applied Water Science, 7(5), 2103-2111.
  • Kumar, M., Yadav, A., & Mehla, N. (2019). Water generation from atmospheric air by using different composite desiccant materials. International Journal of Ambient Energy, 40(4), 343-349.
  • Kumar, P. M., Arunthathi, S., Prasanth, S. J., Aswin, T., Antony, A. A., Daniel, D., . . . Babu, P. N. (2021). Investigation on a desiccant based solar water recuperator for generating water from atmospheric air. Materials Today: Proceedings, 45, 7881-7884.
  • Li, R., Shi, Y., Alsaedi, M., Wu, M., Shi, L., & Wang, P. (2018). Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environmental science & technology, 52(19), 11367-11377.
  • Manoj, K., & Avadhesh, Y. (2015). Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material" CaCl2/saw wood". Desalination, 367, 216-222.
  • Mohamed, M., William, G., & Fatouh, M. (2017). Solar energy utilization in water production from humid air. Solar Energy, 148, 98-109.
  • Mulchandani, A., Malinda, S., Edberg, J., & Westerhoff, P. (2020). Sunlight-driven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants. Environmental Science: Nano, 7(9), 2584-2594.
  • Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R., & Asadollahzadeh, M. (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable and Sustainable Energy Reviews, 120, 109627.
  • Scrivani, A., El Asmar, T., & Bardi, U. (2007). Solar trough concentration for freshwater production and wastewater treatment. Desalination, 206(1-3), 485-493.
  • Srivastava, S., & Yadav, A. (2018). Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Solar Energy, 169, 302-315.
  • Talaat, M., Awad, M., Zeidan, E., & Hamed, A. (2018). Solar-powered portable apparatus for extracting water from air using desiccant solution. Renewable energy, 119, 662-674.
  • Wang, J., Liu, J., Wang, R., & Wang, L. (2017). Experimental investigation on two solar-driven sorption-based devices to extract fresh water from atmosphere. Applied Thermal Engineering, 127, 1608-1616.
  • Wang, J., Wang, R., Wang, L., & Liu, J. (2017). A high efficient semi-open system for fresh water production from atmosphere. Energy, 138, 542-551.
  • William, G. E., Mohamed, M., & Fatouh, M. (2015). Desiccant system for water production from humid air using solar energy. Energy, 90, 1707-1720.
  • Zhao, F., Zhou, X., Liu, Y., Shi, Y., Dai, Y., & Yu, G. (2019). Super moisture‐absorbent gels for all‐weather atmospheric water harvesting. Advanced Materials, 31(10), 1806446.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Merdin Danışmaz 0000-0003-2077-9237

Mohammed Alhurmuzi 0000-0002-7045-4628

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Danışmaz, M., & Alhurmuzi, M. (2021). A Literature Review on Extraction of Potable Water from Atmospheric Air Using Solar Stills: Recent Developments. Avrupa Bilim Ve Teknoloji Dergisi(32), 991-999. https://doi.org/10.31590/ejosat.1039866