Research Article
BibTex RIS Cite

İçmesuyu Dağıtım Sistemlerinde Arıza Bakım Onarım Süreçlerinin İzlenmesi için Performans Göstergeleri

Year 2022, Issue: 34, 126 - 134, 31.03.2022
https://doi.org/10.31590/ejosat.1077753

Abstract

İçmesuyu şebekelerinde oluşan arızalar su kesintisi, şebeke basıncının düşmesi, su kalitesinin düşmesi, su ve enerji kaybı, ekonomik kayıplar, trafik aksaklıkları, müşteri memnuniyetsizlikleri gibi sorunlara neden olmaktadır. İçmesuyu dağıtım sistemlerinde çeşitli sebeplerle meydana gelen arızaların zamanında tespit edilmesi, onarılması ve sistem bakımının yapılması su kayıp yönetimi, Su İdarelerin ekonomisi ve sürdürülebilir su tedariğinin sağlanması açısından oldukça önem arz etmektedir. Arıza bakım planlamaları rehabilitasyon ve yenileme, temizleme, bakım-onarım gibi çeşitli alternatifleri içeren karmaşık bir süreçtir. Bu çalışmanın genel amacı, içmesuyu dağıtım sistemlerinde meydana gelen arızaların performans göstergeleri ile tespit edilmesi ve arıza bakım onarım süreçlerinin izlenmesinin sağlanmasıdır. Bu amaçla çalışmada kullanılacak olan performans göstergelerinin tespiti için öncelikle literatür taraması yapılmış ve çeşitli kurumlar tarafından arıza yönetimi için önerilen performans göstergeleri elde edilmiş ve çalışma kapsamında çeşitli sorunların çözümü için performans göstergesi önerileri sunulmuştur. Belirlenen 18 gösterge, zorluk düzeyleri, gereksinimleri ve veri yapısı dikkate alınarak temel, orta ve ileri seviye şeklinde gruplandırılmıştır. Çalışma performans göstergelerinin belirlenmesi, göstergeler için gerekli verilerin elde edilmesi, analizin yapılması ve değerlendirme aşamalarından oluşmaktadır. Çalışma sonucunda hesaplanan göstergelerin arıza performansının izlenmesinde referans bilgi ürettiği ve arızaların azaltılmasında uygulanan yöntemlerden elde edilen kazanımların analiz edilmesinde de bu göstergelerin önemli faydalar sağladığı görülmüştür.

Supporting Institution

TÜBİTAK

Project Number

220M091

References

  • Berardi, L., & Giustolisi, O. (2021). Calibration of Design Models for Leakage Management of Water Distribution Networks’. Water Resources Management 35(8), 2537–51.
  • Carmona-Paredes, R.B., & Carmona-Benítez, R.B. (2018). Pressure Management in Water Distribution Systems Using a Self-Tuning Controller to Distribute the Available Potable Water with Equality. Water Resources Management 32(5), 1651–73.
  • Chik, L., Albrecht, D., & Kodikara, J. (2017). Estimation of the Short-Term Probability of Failure in Water Mains. Journal of Water Resources Planning and Management. doi:10.1061/(ASCE)WR.1943-5452.0000730.
  • Cullinane, M. J. (1986). Hydraulic reliability of urban water distribution systems. Proc., Water Forum 1986: World Water Issues in Evolution, ASCE, Reston, VA, 1264–1271.
  • Diao, K., Zhou, Y., & Auch, W. (2013). Automated creation of district metered area boundaries in water distribution systems. J Water Resour Plan Manag. 139(2), 184-190.
  • Eugine, M. (2017). Predictive Leakage Estimation Using the Cumulative Minimum Night Flow Approach. American Journal of Water Resources. 5(1), 1-4.
  • Farah, E, & Shahrour, I. (2017). Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow. Water Resources Management. 31, 4821-4833.
  • Fontana, N., Giugni, M., Glielmo, L., Marini, G., & Zollo, R. (2018). Real-Time Control of Pressure for Leakage Reduction in Water Distribution Network: Field Experiments. Journal of Water Resources Planning and Management. 144(3), doi://10.1061/(ASCE)WR.1943-5452.0000887.
  • Gheisi, A., Forsyth, M., Naser, G. (2016). Water distribution systems reliability: A review of research literature. Journal of Water Resources Planning and Management 142 (11), 1-13.
  • Haider, H. (2015). Performance Management Framework for Small to Medium Sized Water Utilities : Conceptualization to Development and Implementation. Civil Engineering. 889–900.
  • Jadhao, R.D., & Gupta, R. (2018). Calibration of Water Distribution Network of the Ramnagar Zone in Nagpur City Using Online Pressure and Flow Data. Applied Water Science. 8, 29.
  • Kutyłowska, M. (2017). Comparison of Two Types of Artificial Neural Networks for Predicting Failure Frequency of Water Conduits. Periodica Polytechnica Civil Engineering. 61(1), 1-6.
  • Laucelli, D.B., Simone, A., Berardi, L., & Giustolisi, O.(2017). Optimal Design of District Metering Areas for the Reduction of Leakages. Journal of Water Resources Planning and Management 143 (6), 04017017.
  • Marzola, I., Alvisi, S., & Franchini, M. (2021). ‘Analysis of MNF and FAVAD Models for Leakage Characterization by Exploiting Smart-Metered Data: The Case of the Gorino Ferrarese (Fe-Italy) District. Water (Switzerland) 13(5).
  • Meirelles, L., Brentan, B.M., & Luvizotto, E. (2018). Optimal Design of Water Supply Networks Using an Energy Recovery Approach. Renewable Energy. 117, 404-413. doi:10.1016/j.renene.2017.10.080.
  • Moslehi, I., Jalili-Ghazizadeh, M., & Yousefi-Khoshqalb, E. (2021). Developing a Framework for Leakage Target Setting in Water Distribution Networks from an Economic Perspective. Structure and Infrastructure Engineering 17(6), 821–37.
  • Mutikanga, H.M., Sharma, S.K., & Vairavamoorthy, K. (2013). Methods and Tools for Managing Losses in Water Distribution Systems. Journal of Water Resources Planning and Management 139 (2), 166–174.
  • Nafi, A., Werey, C., & Llerena, P. (2008). Water Pipe Renewal Using a Multiobjective Optimization Approach. Canadian Journal of Civil Engineering. doi:10.1139/L07-075.
  • Neamtu, C. (2011). The Use of Water Balance in Determining the Water Loss Strategy. Water Utility Journal. 2, 61–68.
  • Pietrucha-Urbanik, K. (2015). Failure Analysis and Assessment on the Exemplary Water Supply Network. Engineering Failure Analysis 57, 137–142. doi:10.1016/j.engfailanal.2015.07.036.
  • Rogers, P.D., & Grigg, N.S. (2009). Failure Assessment Modeling to Prioritize Water Pipe Renewal: Two Case Studies. Journal of Infrastructure Systems. 15(3), doi:10.1061/(ASCE)1076-0342(2009)15:3(162).
  • Roshani, E., & Filion, Y. (2014). WDS Leakage Management through Pressure Control and Pipes Rehabilitation Using an Optimization Approach. Procedia Engineering 89, 21–28.
  • Rutger de Graaf, R.B. (2010). Transforming water infrastructure by linking water management and urban renewal in Rotterdam, Technological Forecasting and Social Change, 77(8), 1282-1291.
  • Salomons, E.,, Skulovich, O., & Ostfeld, A. (2017). Battle of Water Networks DMAs: Multistage Design Approach. Journal of Water Resources Planning and Management. 143(10), doi:10.1061/(ASCE)WR.1943-5452.0000830.
  • Tee, K.F., Khan, L.R., Chen, H.P., & Alani, A.M. (2014). Reliability Based Life Cycle Cost Optimization for Underground Pipeline Networks. Tunnelling and Underground Space Technology. 43, 32-40.
  • Xu, Q., Qiang, Z., Chen, Q., Liu, K., & Cao, N. (2018). A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study.” Water Resources Management. 32 (5), 1713–1723.
  • Vicente, D. J., Garrote, L., Sánchez, R., & Santillán, D. (2016). Pressure Management in Water Distribution Systems: Current Status, Proposals, and Future Trends. Journal of Water Resources Planning and Management 142 (2), 1–13.
  • Wu, Y., Liu, S., Smith, K., & Wang, X. (2018). Using Correlation between Data from Multiple Monitoring Sensors to Detect Bursts in Water Distribution Systems. Journal of Water Resources Planning and Management. 144(2), doi:10.1061/(ASCE)WR.1943-5452.0000870.

Performance Indicators for Monitoring Failure Maintenance and Repair Processes in Water Distribution Systems

Year 2022, Issue: 34, 126 - 134, 31.03.2022
https://doi.org/10.31590/ejosat.1077753

Abstract

Failures in water networks cause problems such as water interruptions, decrease in network pressure, decrease in water quality, loss of water and energy, economic losses, traffic disruptions, and customer dissatisfaction. Detection, repair and system maintenance of failures due to various reasons are very important in terms of water loss management, economy of Water Administrations and ensuring sustainable water supply. Failure maintenance planning is a complex process that includes various alternatives such as rehabilitation and renewal, cleaning, maintenance-repair. The general purpose of this study is to detect the failures in water distribution systems with performance indicators and to monitor the breakdown maintenance and repair processes. For this purpose, in order to determine the performance indicators to be used in the study, first of all, a literature review was made and the performance indicators recommended for failure management by various institutions were obtained and performance indicator suggestions were presented for the solution of various problems within the scope of the study. A total of 18 indicators determined are grouped as basic, intermediate and advanced, taking into account their difficulty levels, needs and data structure. The study consists of the stages of determining the performance indicators, obtaining the necessary data for the indicators, performing the analysis and evaluation.. I was seen that the calculated indicators produce reference information in monitoring the failure performance and these indicators provide significant benefits in analyzing the gains obtained from the methods applied in reducing the failures.

Project Number

220M091

References

  • Berardi, L., & Giustolisi, O. (2021). Calibration of Design Models for Leakage Management of Water Distribution Networks’. Water Resources Management 35(8), 2537–51.
  • Carmona-Paredes, R.B., & Carmona-Benítez, R.B. (2018). Pressure Management in Water Distribution Systems Using a Self-Tuning Controller to Distribute the Available Potable Water with Equality. Water Resources Management 32(5), 1651–73.
  • Chik, L., Albrecht, D., & Kodikara, J. (2017). Estimation of the Short-Term Probability of Failure in Water Mains. Journal of Water Resources Planning and Management. doi:10.1061/(ASCE)WR.1943-5452.0000730.
  • Cullinane, M. J. (1986). Hydraulic reliability of urban water distribution systems. Proc., Water Forum 1986: World Water Issues in Evolution, ASCE, Reston, VA, 1264–1271.
  • Diao, K., Zhou, Y., & Auch, W. (2013). Automated creation of district metered area boundaries in water distribution systems. J Water Resour Plan Manag. 139(2), 184-190.
  • Eugine, M. (2017). Predictive Leakage Estimation Using the Cumulative Minimum Night Flow Approach. American Journal of Water Resources. 5(1), 1-4.
  • Farah, E, & Shahrour, I. (2017). Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow. Water Resources Management. 31, 4821-4833.
  • Fontana, N., Giugni, M., Glielmo, L., Marini, G., & Zollo, R. (2018). Real-Time Control of Pressure for Leakage Reduction in Water Distribution Network: Field Experiments. Journal of Water Resources Planning and Management. 144(3), doi://10.1061/(ASCE)WR.1943-5452.0000887.
  • Gheisi, A., Forsyth, M., Naser, G. (2016). Water distribution systems reliability: A review of research literature. Journal of Water Resources Planning and Management 142 (11), 1-13.
  • Haider, H. (2015). Performance Management Framework for Small to Medium Sized Water Utilities : Conceptualization to Development and Implementation. Civil Engineering. 889–900.
  • Jadhao, R.D., & Gupta, R. (2018). Calibration of Water Distribution Network of the Ramnagar Zone in Nagpur City Using Online Pressure and Flow Data. Applied Water Science. 8, 29.
  • Kutyłowska, M. (2017). Comparison of Two Types of Artificial Neural Networks for Predicting Failure Frequency of Water Conduits. Periodica Polytechnica Civil Engineering. 61(1), 1-6.
  • Laucelli, D.B., Simone, A., Berardi, L., & Giustolisi, O.(2017). Optimal Design of District Metering Areas for the Reduction of Leakages. Journal of Water Resources Planning and Management 143 (6), 04017017.
  • Marzola, I., Alvisi, S., & Franchini, M. (2021). ‘Analysis of MNF and FAVAD Models for Leakage Characterization by Exploiting Smart-Metered Data: The Case of the Gorino Ferrarese (Fe-Italy) District. Water (Switzerland) 13(5).
  • Meirelles, L., Brentan, B.M., & Luvizotto, E. (2018). Optimal Design of Water Supply Networks Using an Energy Recovery Approach. Renewable Energy. 117, 404-413. doi:10.1016/j.renene.2017.10.080.
  • Moslehi, I., Jalili-Ghazizadeh, M., & Yousefi-Khoshqalb, E. (2021). Developing a Framework for Leakage Target Setting in Water Distribution Networks from an Economic Perspective. Structure and Infrastructure Engineering 17(6), 821–37.
  • Mutikanga, H.M., Sharma, S.K., & Vairavamoorthy, K. (2013). Methods and Tools for Managing Losses in Water Distribution Systems. Journal of Water Resources Planning and Management 139 (2), 166–174.
  • Nafi, A., Werey, C., & Llerena, P. (2008). Water Pipe Renewal Using a Multiobjective Optimization Approach. Canadian Journal of Civil Engineering. doi:10.1139/L07-075.
  • Neamtu, C. (2011). The Use of Water Balance in Determining the Water Loss Strategy. Water Utility Journal. 2, 61–68.
  • Pietrucha-Urbanik, K. (2015). Failure Analysis and Assessment on the Exemplary Water Supply Network. Engineering Failure Analysis 57, 137–142. doi:10.1016/j.engfailanal.2015.07.036.
  • Rogers, P.D., & Grigg, N.S. (2009). Failure Assessment Modeling to Prioritize Water Pipe Renewal: Two Case Studies. Journal of Infrastructure Systems. 15(3), doi:10.1061/(ASCE)1076-0342(2009)15:3(162).
  • Roshani, E., & Filion, Y. (2014). WDS Leakage Management through Pressure Control and Pipes Rehabilitation Using an Optimization Approach. Procedia Engineering 89, 21–28.
  • Rutger de Graaf, R.B. (2010). Transforming water infrastructure by linking water management and urban renewal in Rotterdam, Technological Forecasting and Social Change, 77(8), 1282-1291.
  • Salomons, E.,, Skulovich, O., & Ostfeld, A. (2017). Battle of Water Networks DMAs: Multistage Design Approach. Journal of Water Resources Planning and Management. 143(10), doi:10.1061/(ASCE)WR.1943-5452.0000830.
  • Tee, K.F., Khan, L.R., Chen, H.P., & Alani, A.M. (2014). Reliability Based Life Cycle Cost Optimization for Underground Pipeline Networks. Tunnelling and Underground Space Technology. 43, 32-40.
  • Xu, Q., Qiang, Z., Chen, Q., Liu, K., & Cao, N. (2018). A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study.” Water Resources Management. 32 (5), 1713–1723.
  • Vicente, D. J., Garrote, L., Sánchez, R., & Santillán, D. (2016). Pressure Management in Water Distribution Systems: Current Status, Proposals, and Future Trends. Journal of Water Resources Planning and Management 142 (2), 1–13.
  • Wu, Y., Liu, S., Smith, K., & Wang, X. (2018). Using Correlation between Data from Multiple Monitoring Sensors to Detect Bursts in Water Distribution Systems. Journal of Water Resources Planning and Management. 144(2), doi:10.1061/(ASCE)WR.1943-5452.0000870.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cansu Orhan 0000-0002-0987-1297

Mahmut Fırat 0000-0002-8010-9289

Salih Yılmaz 0000-0002-3206-1225

Abdullah Ateş 0000-0002-4236-6794

Project Number 220M091
Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Orhan, C., Fırat, M., Yılmaz, S., Ateş, A. (2022). İçmesuyu Dağıtım Sistemlerinde Arıza Bakım Onarım Süreçlerinin İzlenmesi için Performans Göstergeleri. Avrupa Bilim Ve Teknoloji Dergisi(34), 126-134. https://doi.org/10.31590/ejosat.1077753