Research Article
BibTex RIS Cite

Hemzemin Geçitlerin Geometrik Tasarım Açısından Risk Değerlendirme Modeli

Year 2022, Issue: 34, 787 - 792, 31.03.2022
https://doi.org/10.31590/ejosat.1082518

Abstract

Gelişen raylı sistem yapısı ile güvenli ve hızlı alt yapı sistemleri önem kazanmıştır. Alt yapı sistemlerinden olan hemzemin geçitler, meydana gelebilecek kazaların olumsuz etkileri nedeni ile önem verilen ve dünya üzerinde ciddi çalışmalar yapılan bir alan olarak karşımıza çıkmaktadır. Raylı sistem işletmeleri, hemzemin geçit tasarımlarını coğrafi yapı, hat kapasiteleri, insanların farkındalık düzeyleri, sistem teknoloji düzeyleri gibi detaylara göre özel olarak ele alınırlar. Türkiye’de hemzemin geçit kurulacak olan bölgenin, tren seyir hızı ve seyir momenti değeri hemzemin geçitin açılıp açılamayacağını veya türünü belirlemek için kullanılan temel hesaplamadır. Geometrik tasarım yapıları raylı sistem ve kara yolu taşıtlarının seyir hızları, görüş açıları, yolların kesişim yapıları, geçitlerin bağlantı geometrisi, uyarı ekipmanı mesafeleri ve durma noktası benzeri detayları incelemektedir. Hemzemin geçitlerin güvenli hizmet vermesi için, ISO 31000:2009 risk yönetimi standardında göre oluşturulan ve alanda kabul edilmiş bir yönetim modeli olan ALCAM modeline göre risk değerlendirme yapısı kullanılmaktadır. Bu çalışmada ilgili kabuller incelenerek ortak değerlendirmeye imkân sağlayan, geometrik tasarım ve bu tasarımın güvenliğinin oluşturulabilmesi için risk modeli önerisi ortaya konulacaktır.

References

  • A. Creber. (2004). Review of Level Crossing Assessment Model Improvement Process, for Rail Infrastructure Corporation (NSW).
  • ALCAM. (2007). Technical manual, v1.01, National ALCAM Committee.
  • ALCAM. (2009). Level Crossing Management System (LXM) technical manual, National ALCAM Committee.
  • American Association of State Highway Officials. (2018). A Policy on Geometric Design of Highways and Streets.
  • ARRB Transport Group. (2009). Risk advice on ALCAM, Philip Roper, Blair Turner, Dimitris Tsolakis, and Chris Jurewicz, Project VC74188-1, for National ALCAM Committee.
  • ARRB Transport Group. (2010). Correlation between ALCAM, crash factors and locations, Michael Levasseur, and Ben Mitchell, Project 002826, for National ALCAM Committee.
  • ARRB Transport Group. (2011). Comparison of ALCAM and ALCRM models for rail level crossing risk assessment, Peter Croft and Blair Turner, Project VC74188, for National ALCAM Committee.
  • Ay, İ. (2014). The Usage Of Geosynthetıc Materıals On Raılways And Reducıng Ballast- Sub Balast Layer Thıckness, İstanbul Technıcal Unıversıty, Instıtute Of Scıence, Master's Thesıs, İstanbul.
  • Baker Ross, Kieran Helm. (2011). Measurement of sight distances at level crossings, for National ALCAM Committee.
  • Brent D. Ogden, Chelsey Cooper. (2019). Highway-Rail Crossing Handbook, 3rd Edition, Institute of Transportation Engineers, Federal Railroad Administration.
  • Creber, Associates. (2003). Review of Rail Infrastructure Corporation Level Crossing Assessment Model Process, for Rail Infrastructure Corporation (NSW).
  • DB Netze. (2008). Guideline 815: Planning And Maintaining Level Crossing Systems, Germany.
  • Hughes Peter. (2002). A risk assessment system for passive level crossings, Seventh International Symposium of Railroad-Highway Grade Crossing Research and Safety, Melbourne, Australia.
  • Independent Transport Safety Regulator NSW. (2008). Review of processes for prioritising resources for the level crossing improvement program (LCIP).
  • ISO 31000:2009. (2009). Risk Management—Principles and Guidelines. Geneva : International Standards Organisation. Meiers Simon. (2012). Proposal for incorporation of ALCAM likelihood factor into risk score, for National ALCAM Committee.
  • Queensland Level Crossing Safety P Team. (1999). Level crossing safety volume 2: Implementation, Parts 1-6, for the Queensland Level Crossing Safety Steering Group.
  • Queensland Level Crossing Safety Project Team. (1999). Level crossing safety volume 1: Guidelines, Parts 1-9, for the Queensland Level Crossing Safety Steering Group.
  • Risk and Reliability Associates (R2A) . (2006). Due diligence review of the ALCAM road and pedestrian model, Report 173-26, for Department of Transport.
  • Sotera Risk Solutions. (2011). ALCAM consequence model development, David Harris and Peter Dray, J1161/Doc001, for National ALCAM Committee.
  • T.C Devlet Demiryolları İşletmesi Genel Müdürlüğü . (2017). TCDD Emniyet Yönetim Sistemi El Kitabı (Sürüm No: 1.0). Ankara: TCDD Demiryolu Emniyeti ve Risk Yönetimi Müdürlüğü.
  • TCDD. (1996). Hemzemin Geçitlerin Korunması Bakımı ve Yönetimi İle Geçit Bekçilerinin Görevlerine Ait Yönetmelik. T. C. Resmi Gazete, 22512.
  • Transport Canada. (2014). Grade Crossing Standards, Canada.
  • Ulaştırma ve Alt Yapı Bakanlığı . (2015). Demiryolu Emniyet Yönetmeliği. T. C. Resmi Gazete, 29537.
  • Ulaştırma ve Alt Yapı Bakanlığı. (2018). Demiryolu Hemzemin Geçitlerinde Alınacak Tedbirler ve Uygulama Esasları Hakkında Yönetmelik. (2018). T. C. Resmi Gazete, 30468.

Risk Assessment Model of Grade Crossings in Terms of Geometric Design

Year 2022, Issue: 34, 787 - 792, 31.03.2022
https://doi.org/10.31590/ejosat.1082518

Abstract

With the developing rail system structure, safe and fast infrastructure systems have gained importance. Grade crossings, which are one of the infrastructure systems, appear as an area that is given importance due to the negative effects of accidents that may occur, and serious studies are carried out in the world. Rail system operators, deal with grade crossing designs according to details such as geographical structure, line capacities, people's awareness levels, system technology levels. The train cruising speed and cruising moment value of the area where the grade crossing will be established is the basic calculation used to determine whether the grade crossing can be opened or not. Geometric design structures examine the cruising speed of rail and road vehicles, viewing angles, intersection structures of roads, connection geometry of crossings, warning equipment distances and stopping points. For the grade crossings created to be safe, a risk assessment structure will be used according to ALCAM, a management model established in accordance with the ISO 31000:2009 risk management standard. In this study, by examining the relevant standards, a geometric design and a risk model proposal will be put forward to create the security of this design, which allows for joint evaluation.

References

  • A. Creber. (2004). Review of Level Crossing Assessment Model Improvement Process, for Rail Infrastructure Corporation (NSW).
  • ALCAM. (2007). Technical manual, v1.01, National ALCAM Committee.
  • ALCAM. (2009). Level Crossing Management System (LXM) technical manual, National ALCAM Committee.
  • American Association of State Highway Officials. (2018). A Policy on Geometric Design of Highways and Streets.
  • ARRB Transport Group. (2009). Risk advice on ALCAM, Philip Roper, Blair Turner, Dimitris Tsolakis, and Chris Jurewicz, Project VC74188-1, for National ALCAM Committee.
  • ARRB Transport Group. (2010). Correlation between ALCAM, crash factors and locations, Michael Levasseur, and Ben Mitchell, Project 002826, for National ALCAM Committee.
  • ARRB Transport Group. (2011). Comparison of ALCAM and ALCRM models for rail level crossing risk assessment, Peter Croft and Blair Turner, Project VC74188, for National ALCAM Committee.
  • Ay, İ. (2014). The Usage Of Geosynthetıc Materıals On Raılways And Reducıng Ballast- Sub Balast Layer Thıckness, İstanbul Technıcal Unıversıty, Instıtute Of Scıence, Master's Thesıs, İstanbul.
  • Baker Ross, Kieran Helm. (2011). Measurement of sight distances at level crossings, for National ALCAM Committee.
  • Brent D. Ogden, Chelsey Cooper. (2019). Highway-Rail Crossing Handbook, 3rd Edition, Institute of Transportation Engineers, Federal Railroad Administration.
  • Creber, Associates. (2003). Review of Rail Infrastructure Corporation Level Crossing Assessment Model Process, for Rail Infrastructure Corporation (NSW).
  • DB Netze. (2008). Guideline 815: Planning And Maintaining Level Crossing Systems, Germany.
  • Hughes Peter. (2002). A risk assessment system for passive level crossings, Seventh International Symposium of Railroad-Highway Grade Crossing Research and Safety, Melbourne, Australia.
  • Independent Transport Safety Regulator NSW. (2008). Review of processes for prioritising resources for the level crossing improvement program (LCIP).
  • ISO 31000:2009. (2009). Risk Management—Principles and Guidelines. Geneva : International Standards Organisation. Meiers Simon. (2012). Proposal for incorporation of ALCAM likelihood factor into risk score, for National ALCAM Committee.
  • Queensland Level Crossing Safety P Team. (1999). Level crossing safety volume 2: Implementation, Parts 1-6, for the Queensland Level Crossing Safety Steering Group.
  • Queensland Level Crossing Safety Project Team. (1999). Level crossing safety volume 1: Guidelines, Parts 1-9, for the Queensland Level Crossing Safety Steering Group.
  • Risk and Reliability Associates (R2A) . (2006). Due diligence review of the ALCAM road and pedestrian model, Report 173-26, for Department of Transport.
  • Sotera Risk Solutions. (2011). ALCAM consequence model development, David Harris and Peter Dray, J1161/Doc001, for National ALCAM Committee.
  • T.C Devlet Demiryolları İşletmesi Genel Müdürlüğü . (2017). TCDD Emniyet Yönetim Sistemi El Kitabı (Sürüm No: 1.0). Ankara: TCDD Demiryolu Emniyeti ve Risk Yönetimi Müdürlüğü.
  • TCDD. (1996). Hemzemin Geçitlerin Korunması Bakımı ve Yönetimi İle Geçit Bekçilerinin Görevlerine Ait Yönetmelik. T. C. Resmi Gazete, 22512.
  • Transport Canada. (2014). Grade Crossing Standards, Canada.
  • Ulaştırma ve Alt Yapı Bakanlığı . (2015). Demiryolu Emniyet Yönetmeliği. T. C. Resmi Gazete, 29537.
  • Ulaştırma ve Alt Yapı Bakanlığı. (2018). Demiryolu Hemzemin Geçitlerinde Alınacak Tedbirler ve Uygulama Esasları Hakkında Yönetmelik. (2018). T. C. Resmi Gazete, 30468.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cevat Özarpa 0000-0002-1195-2344

Bahadır Furkan Kınacı 0000-0001-6872-2630

İsa Avcı 0000-0001-7032-8018

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Özarpa, C., Kınacı, B. F., & Avcı, İ. (2022). Hemzemin Geçitlerin Geometrik Tasarım Açısından Risk Değerlendirme Modeli. Avrupa Bilim Ve Teknoloji Dergisi(34), 787-792. https://doi.org/10.31590/ejosat.1082518