Research Article
BibTex RIS Cite

Baca Gazı Destekli Organik Rankine Çevrimi için Taguchi Analizi

Year 2022, Issue: 34, 381 - 386, 31.03.2022
https://doi.org/10.31590/ejosat.1082626

Abstract

Atık ısı geri kazanımının önemli bir rol oynadığı gelecekteki enerji talebi ve çevre kirliliği sorunlarının hesaplanmasında verimlilik çoğu zaman birincil faktördür. Organik Rankine çevrimi (ORC), düşük ile orta dereceli atık ısı kaynakları için teknik uyumluluk, fizibilite ve güvenilirlik nedeniyle araştırmacıların ve/veya üreticinin yaygın ilgisini çekmeye devam etmektedir. Bu makale, enerji ve ekserji kavramlarına dayalı olarak baca gazı destekli organik Rankine çevrimleri üzerine optimizasyon analizi sunmaktadır. Bu çalışmada, termal enerjiyi elektrik ve/veya mekanik enerjiye dönüştürmek için iki türbinli çevrim kullanılarak Taguchi metodu ile optimizasyon çalışması yapılmıştır. Optimizasyon çalışması için parametreler, türbin giriş basıncı P1, çevrim ara basıncı P2 ve türbinden ara basınçtaki isı eşanjörüne aktarılan akışkan oranı PC3 olarak seçilmiştir. Elde edilen sonuçlara göre ORC çevriminin birinci ve ikinci kanun verimleri üzerinde en etkili parametrenin türbin giriş basıncı (1. kanun için %70.23, 2. kanun için %72.38) olduğu tespit edilmiştir.

References

  • Akbay, O., Yılmaz, F. (2021). Thermodynamic Analyzes and Performance Comparison of Flash Binary Geothermal Power Generation Plant, El Cezeri, 8(1), pp.445-461.
  • Alirahmi, S.M., Assareh, E., Chitsaz, A., Holagh, S.G., Jalilinasrabady, S. (2021). Electrolyzer-fuel cell combination for grid peak load management in a geothermal power plant: Power to hydrogen and hydrogen to power conversion, Int J Hydrogen Energy, 46(50), pp.25650–65.
  • Bejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture, Int. J. Energy Research, 26, pp.545-565.
  • Cengel, Y.A., Boles, B.A. (1989). Thermodynamics : An engineering approach. Singapore: McGraw Hill Book Co. Etemoglu, A.B. (2008). Thermodynamic evaluation of geothermal power generation systems in Turkey, Energy Sources, Part A, 30, pp. 905–916.
  • Forman, C., Muritala, I.K., Pardemann, R., Meyer, B. (2016). Estimating the global waste heat potential, Renewable and Sustainable Energy Reviews, 57, pp.1568–1579.
  • Garcia, S.I., Garcia, R.F., Carril, J.C., Garcia, D.I. (2018). A review of thermodynamic cycles used in low temperature recovery systems over the last two years, Renewable and Sustainable Energy Reviews, 81, pp.760–767.
  • Imran, M., Haglind, F., Asim, M., Alvi, J.Z. (2018). Recent research trends in organic Rankine cycle technology - A bibliometric approach, Renewable and Sustainable Energy Reviews, 81, pp.552–562.
  • Kermani, M., Wallerand, A.S., Kantor, I.D., Maréchal, F. (2018). Generic Superstructure Synthesis of Organic Rankine Cycles for Waste Heat Recovery in Industrial Processes, Applied Energy, 212, pp.1203–1225.
  • Pulat, E., Etemoglu, A.B., Can, M. (2009). Waste heat recovery potential in Turkish textile industry: case study for city of Bursa, Renewable and Sustainable Energy Reviews, 13(3), pp.663-672.
  • Soltani, M., Nabat, M.H., Razmi, A.R., Dusseault, M.B., Nathwani, J. (2020). A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system, Energy Convers Manag., 222, 113203.
  • Taguchi, G. (1990). Introduction to quality engineering. Asian Productivity Organization, Tokyo.
  • Turkan, B., Etemoglu, A.B. (2020). Performance Evaluation For Thermal Architectures of Flue-Gas Assisted Organic Rankin Cycle Systems, J. of Thermal Science and Technology, 40(1), pp.65-76.
  • Yamamoto, T., Furuhata, T., Arai, N., Mori, K. (2001). Design and testing of the organic Rankine cycle, Energy, 26, pp.239–251.

Taguchi Analysis for Flue Gas Assisted Organic Rankine Cycle

Year 2022, Issue: 34, 381 - 386, 31.03.2022
https://doi.org/10.31590/ejosat.1082626

Abstract

Efficiency is often the primary factor in calculating future energy demand and environmental pollution problems, where waste heat recovery plays an important role. The organic Rankine cycle (ORC) continues to attract widespread attention from researchers and/or manufacturers due to its technical compatibility, feasibility and reliability for low to moderate waste heat sources. This article presents optimization analysis on flue gas assisted organic Rankine cycles based on energy and exergy concepts. In this study, an optimization study was carried out with the Taguchi method using two turbine cycles to convert thermal energy into electrical and/or mechanical energy. The parameters for the optimization study were selected as turbine inlet pressure P1, cycle intermediate pressure P2 and fluid ratio PC3 transferred from the turbine to the heat exchanger at intermediate pressure. According to the results obtained, it has been determined that the most effective parameter on the first and second law efficiencies of the ORC cycle is the turbine inlet pressure (70.23% for the 1st law, 72.38% for the 2nd law).

References

  • Akbay, O., Yılmaz, F. (2021). Thermodynamic Analyzes and Performance Comparison of Flash Binary Geothermal Power Generation Plant, El Cezeri, 8(1), pp.445-461.
  • Alirahmi, S.M., Assareh, E., Chitsaz, A., Holagh, S.G., Jalilinasrabady, S. (2021). Electrolyzer-fuel cell combination for grid peak load management in a geothermal power plant: Power to hydrogen and hydrogen to power conversion, Int J Hydrogen Energy, 46(50), pp.25650–65.
  • Bejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture, Int. J. Energy Research, 26, pp.545-565.
  • Cengel, Y.A., Boles, B.A. (1989). Thermodynamics : An engineering approach. Singapore: McGraw Hill Book Co. Etemoglu, A.B. (2008). Thermodynamic evaluation of geothermal power generation systems in Turkey, Energy Sources, Part A, 30, pp. 905–916.
  • Forman, C., Muritala, I.K., Pardemann, R., Meyer, B. (2016). Estimating the global waste heat potential, Renewable and Sustainable Energy Reviews, 57, pp.1568–1579.
  • Garcia, S.I., Garcia, R.F., Carril, J.C., Garcia, D.I. (2018). A review of thermodynamic cycles used in low temperature recovery systems over the last two years, Renewable and Sustainable Energy Reviews, 81, pp.760–767.
  • Imran, M., Haglind, F., Asim, M., Alvi, J.Z. (2018). Recent research trends in organic Rankine cycle technology - A bibliometric approach, Renewable and Sustainable Energy Reviews, 81, pp.552–562.
  • Kermani, M., Wallerand, A.S., Kantor, I.D., Maréchal, F. (2018). Generic Superstructure Synthesis of Organic Rankine Cycles for Waste Heat Recovery in Industrial Processes, Applied Energy, 212, pp.1203–1225.
  • Pulat, E., Etemoglu, A.B., Can, M. (2009). Waste heat recovery potential in Turkish textile industry: case study for city of Bursa, Renewable and Sustainable Energy Reviews, 13(3), pp.663-672.
  • Soltani, M., Nabat, M.H., Razmi, A.R., Dusseault, M.B., Nathwani, J. (2020). A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system, Energy Convers Manag., 222, 113203.
  • Taguchi, G. (1990). Introduction to quality engineering. Asian Productivity Organization, Tokyo.
  • Turkan, B., Etemoglu, A.B. (2020). Performance Evaluation For Thermal Architectures of Flue-Gas Assisted Organic Rankin Cycle Systems, J. of Thermal Science and Technology, 40(1), pp.65-76.
  • Yamamoto, T., Furuhata, T., Arai, N., Mori, K. (2001). Design and testing of the organic Rankine cycle, Energy, 26, pp.239–251.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burak Türkan 0000-0002-4019-7835

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Türkan, B. (2022). Baca Gazı Destekli Organik Rankine Çevrimi için Taguchi Analizi. Avrupa Bilim Ve Teknoloji Dergisi(34), 381-386. https://doi.org/10.31590/ejosat.1082626