Research Article
BibTex RIS Cite

Kumlu zeminler için sonlu elemanlar yöntemi ve analitik yöntemlerle bulunan taşıma gücü faktörü Nγ karşılaştırılması

Year 2022, Issue: 36, 67 - 72, 31.05.2022
https://doi.org/10.31590/ejosat.1102440

Abstract

Sığ şerit temeller, yapıdan gelen yükleri taşımak için önemlidir. Yük taşıma kapasitesi hem arazi testleri (plaka yük testi) ile hem de sayısal olarak hesaplanabilir. Taşıma kapasitesi (gücü) faktörleri, herhangi bir temelin taşıma gücünü etkileyen ana parametrelerdir. Bu faktörlerden biri olan Nγ önemli bir etkiye sahiptir. İçsel sürtünme açısındaki (ϕ) artış, Nγ değerinin artmasına neden olur. Ancak ϕ değeri 30°'ye ulaştıktan sonra dramatik bir artış gözlenmektedir. Bu, taşıma kapasitesi değerlerini karmaşık hale getirir. Bu çalışmada, Geostudio 2012 yazılımı ile kumlu zeminler üzerine oturan yüzeyde (derinliksiz) şerit temel tasarlanmıştır. Çeşitli temel genişliği (1 m, 1.25 m, 1.5 m, 1.75 m ve 2 m) ve içsel sürtünme açısı (29°, 31°, 33°, 35°, 37°, 39° ve 41°) seçilmiştir. Taşıma kapasitesi değerleri hem sayısal (yazılım) hem de analitik yöntemlerle hesaplanmıştır. Daha sonra, analitik yöntemlerin Nγ değerleri yazılımdan elde edilen sonuçlarla karşılaştırılmıştır. Sonuçlar, Biarez 1961'in ortalama Nγ değerlerine sahip olduğunu, Terzaghi (1943) ve Michalowski (1997)'nin ise maksimum değerlere sahip olduğunu göstermektedir. Sayısal analizden (sonlu elemanlar yöntemi) elde edilen Nγ değeri de temel genişliğinin artmasıyla artmıştır. Sonlu elemanlar yönteminden elde edilen değerler, B = 1.25 m olduğunda diğer analitik yöntemlerin ortalaması olmuştur. Ancak sayısal yöntemlerden elde edilen Nγ değerleri B = 2 m olduğunda en büyüktür.

References

  • Frydman, S., & Burd, H. J. (1997). Numerical studies of bearing capacity factor. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), 20–29.
  • Terzaghi, K. V. (1943). Theoretical soil mechanics. John Wiley & Sons, Inc. New York.
  • Biarez, J., Burel, M., & Wack, B. (1961). Contribution a l’etude de la Force Portante des Fondations. Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris. 1, 603–609.
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1(1), 16–26.
  • Booker, J. R. (1969). Application of theories of plasticity for cohesive frictional soils. Ph.D. Thesis, University of Sydney, Australia
  • Hansen, J. B. (1970). A revised and extended formula for bearing capacity. Bulletin 28. Danish Geotechnical Institute. Copenhagen.
  • Vesic, A. S. (1973). Analysis of ultimate loads of shallow foundations. Journal of Soil Mechanics Foundation Engineering, 99(1), 45-76.
  • Michalowski, R. L. (1997). An estimate of the influence of the soil weight on bearing capacity using limit analysis. Soils and Foundations, 37(4), 57–64.
  • Kumar, J. (2003). Nγ for rough strip footing using the method of characteristics. Canadian Geotechnical Journal, 40,669-674.
  • Ukritchon, B., Whittle, A. J., & Klangvijit C. (2003). Calculations of bearing capacity factor Nγ using numerical limit analysis. Journal of Geotechnical and Geoenvironmental Engineering, 129 (6), 68-74.
  • Hjiaj, M., Liyamin, A. V., & Sloan, S. W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 42, 1681-1704.
  • Martin, C. M. (2005). Exact bearing capacity calculations using the method of characteristics. Proceedings Eleventh International Conference of the International Association for Computer Methods and Advances in Geomechanic, Turin, 4, 441-450.
  • Jahanandish, M., Veiskarami, M., & Ghahramani, A.(2010). Effect of stress level on the bearing capacity factor, Nγ, by the ZEL method. KSCE Journal of Civil Engineering, 40(5), 709-723.
  • Benmebarek, S., Remadna, M. S., Benmebarek, N., & Belounar, L. (2012). Numerical evaluation of the bearing capacity factor Nγ of ring footings. Computers and Geotechnics, 44, 132-138.
  • Mrunal, P., Mandal, J. N., & Devaikar, D. M. (2014). Computation of bearing capacity factor Nγ. International Journal of Geotechnical Engineering, 8(4), 372-382.
  • Han, D., Xie, X., & Huang, L. (2016). The bearing capacity factor Nγ of strip footings on c−ϕ−γ soil using the method of characteristics. SpringerPlus, 5, 1-17.
  • Soufi, G. R., Chenari, R. J., & Fard, M. K. (2019). Influence of random heterogeneity of the friction angle on the bearing capacity factor Nγ. Georisk: Assesment and Management of Risk for Engineered Systems and Geohazards, 14(1), 69-89.
  • Das B., & Sivakugan, N. (2019). Principles of Foundation Engineering 9E SI ed., R. M. Osgood, Jr., Ed. Boston, USA: Cengage.
  • Geostudio (2012), Sigma/W 2012 Module, Geo-Slope International, Canada.
  • De Beer, E. E. (1970). Experimental determination on the shape factors and the bearing capacity of sand. Geotechnics, 2(4), 387-411. De Beer, E. E. (1970). Experimental determination on the shape factors and the bearing capacity of sand. Geotechnics, 2(4), 387-411.
  • Elhakim A. F. (2005). Evaluation of shallow foundation displacements using small-strain stiffness. Ph.D. Thesis, Georgia Institute of Technology, USA.
  • Dağlı, E., & Çapar, Ö. F. (2021). Evaluation of the bearing capacity of shallow strip foundations resting on sandy soils with analytical and numerical methods. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(1), 91-100.

Comparing bearing capacity factor Nγ of finite element method with analytical methods for sandy soils

Year 2022, Issue: 36, 67 - 72, 31.05.2022
https://doi.org/10.31590/ejosat.1102440

Abstract

Shallow strip footings are essential to carry loads from structures. Load bearing capacity factors can be calculated both by the field tests (plate load test) and numerically. Bearing capacity factors are the main parameters that affect the bearing capacity of any foundations. Nγ, one of these factors, have significant impact. Increase in internal frictional angle (ϕ), causes enhance the Nγ value. However, after ϕ value reaches 30°, dramatic increase is observed. This make the bearing capacity values complicated. In this study, strip foundation on surface resting on sandy soils were designed with a Geostudio 2012 software. Various foundation width (1, 1.25, 1.5, 1.75 and 2 m) and internal friction angle (29°, 31°, 33°, 35°, 37°, 39°, and 41°) was selected. Bearing capacity values were calculated with both numerical (software) and analytical methods. After, Nγ values of analytical methods were compared to results obtained from software. Results indicate that, Biarez 1961 has the average Nγ values while Terzaghi (1943) and Michalowski (1997) have the maximum. Nγ value obtained from numerical analysis (finite element method) increased with an increase in foundation width also. Values from finite element method is average of other analytical methods when B = 1.25 m, while Nγ values of numerical methods are the biggest when B = 2 m.

References

  • Frydman, S., & Burd, H. J. (1997). Numerical studies of bearing capacity factor. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), 20–29.
  • Terzaghi, K. V. (1943). Theoretical soil mechanics. John Wiley & Sons, Inc. New York.
  • Biarez, J., Burel, M., & Wack, B. (1961). Contribution a l’etude de la Force Portante des Fondations. Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris. 1, 603–609.
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1(1), 16–26.
  • Booker, J. R. (1969). Application of theories of plasticity for cohesive frictional soils. Ph.D. Thesis, University of Sydney, Australia
  • Hansen, J. B. (1970). A revised and extended formula for bearing capacity. Bulletin 28. Danish Geotechnical Institute. Copenhagen.
  • Vesic, A. S. (1973). Analysis of ultimate loads of shallow foundations. Journal of Soil Mechanics Foundation Engineering, 99(1), 45-76.
  • Michalowski, R. L. (1997). An estimate of the influence of the soil weight on bearing capacity using limit analysis. Soils and Foundations, 37(4), 57–64.
  • Kumar, J. (2003). Nγ for rough strip footing using the method of characteristics. Canadian Geotechnical Journal, 40,669-674.
  • Ukritchon, B., Whittle, A. J., & Klangvijit C. (2003). Calculations of bearing capacity factor Nγ using numerical limit analysis. Journal of Geotechnical and Geoenvironmental Engineering, 129 (6), 68-74.
  • Hjiaj, M., Liyamin, A. V., & Sloan, S. W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 42, 1681-1704.
  • Martin, C. M. (2005). Exact bearing capacity calculations using the method of characteristics. Proceedings Eleventh International Conference of the International Association for Computer Methods and Advances in Geomechanic, Turin, 4, 441-450.
  • Jahanandish, M., Veiskarami, M., & Ghahramani, A.(2010). Effect of stress level on the bearing capacity factor, Nγ, by the ZEL method. KSCE Journal of Civil Engineering, 40(5), 709-723.
  • Benmebarek, S., Remadna, M. S., Benmebarek, N., & Belounar, L. (2012). Numerical evaluation of the bearing capacity factor Nγ of ring footings. Computers and Geotechnics, 44, 132-138.
  • Mrunal, P., Mandal, J. N., & Devaikar, D. M. (2014). Computation of bearing capacity factor Nγ. International Journal of Geotechnical Engineering, 8(4), 372-382.
  • Han, D., Xie, X., & Huang, L. (2016). The bearing capacity factor Nγ of strip footings on c−ϕ−γ soil using the method of characteristics. SpringerPlus, 5, 1-17.
  • Soufi, G. R., Chenari, R. J., & Fard, M. K. (2019). Influence of random heterogeneity of the friction angle on the bearing capacity factor Nγ. Georisk: Assesment and Management of Risk for Engineered Systems and Geohazards, 14(1), 69-89.
  • Das B., & Sivakugan, N. (2019). Principles of Foundation Engineering 9E SI ed., R. M. Osgood, Jr., Ed. Boston, USA: Cengage.
  • Geostudio (2012), Sigma/W 2012 Module, Geo-Slope International, Canada.
  • De Beer, E. E. (1970). Experimental determination on the shape factors and the bearing capacity of sand. Geotechnics, 2(4), 387-411. De Beer, E. E. (1970). Experimental determination on the shape factors and the bearing capacity of sand. Geotechnics, 2(4), 387-411.
  • Elhakim A. F. (2005). Evaluation of shallow foundation displacements using small-strain stiffness. Ph.D. Thesis, Georgia Institute of Technology, USA.
  • Dağlı, E., & Çapar, Ö. F. (2021). Evaluation of the bearing capacity of shallow strip foundations resting on sandy soils with analytical and numerical methods. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(1), 91-100.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emrah Dağlı 0000-0002-5744-8151

Early Pub Date April 11, 2022
Publication Date May 31, 2022
Published in Issue Year 2022 Issue: 36

Cite

APA Dağlı, E. (2022). Comparing bearing capacity factor Nγ of finite element method with analytical methods for sandy soils. Avrupa Bilim Ve Teknoloji Dergisi(36), 67-72. https://doi.org/10.31590/ejosat.1102440