Research Article
BibTex RIS Cite

Tribonacci Sayıları ile İlişkili Bir Tamsayı Dizisininin Genellemesi

Year 2022, Issue: 39, 33 - 38, 31.07.2022
https://doi.org/10.31590/ejosat.1144208

Abstract

Bu çalışmada önce {1,2, . . . ,n } kümesinin ardışık üç tek sayı içermeyen S alt kümelerinin sayısına karşılık gelen tam sayı dizisini göz önüne aldık. Sonra bu diziyi, Tribonacci polinomları ile ilişkili bir polinom dizisine genelledik. Daha sonar polinom dizisinin bazı temel özelliklerini elde ettik.

References

  • Arslan, B. and Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Odd Integers, European Journal of Science and Technology, (28), pp. 352-356.
  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, pp. 67-69.
  • Hoggatt V. E. and Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, Vol. 11, pp. 457–465.
  • Kocer E. G. and Gedikli, H. (2016). Trivariate Fibonacci and Lucas polynomials,’’ Konuralp J. Math., 4, pp. 247–254.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Ramirez, J. L. and Sirvent, V. F. (2014). Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences, 17, Article 14.4.2.
  • Rybołowicz, B. & Tereszkiewicz, A. (2018). Generalized Tricobsthal and generalized Tribonacci polynomials,” Applied Mathematics and Computation, 325, pp. 297–308.
  • Yilmaz, N. and Taskara, N. (2014). Incomplete Tribonacci–Lucas Numbers and Polynomials.’’ Advances in Applied Clifford Algebras, 25, pp. 741-753.
  • Yogesh Kumar Gupta, Badshah, V. H., Mamta Singh, Kiran Sisodiya. (2016). Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. Vol. 4, No. 1, pp. 20-22.

Generalization of an Integer Sequence Associated with Tribonacci Numbers

Year 2022, Issue: 39, 33 - 38, 31.07.2022
https://doi.org/10.31590/ejosat.1144208

Abstract

In this paper we first consider an integer sequence which enumerates the number of subsets of S of the set [n]={1,2, . . . ,n } containing no three consecutive odd integers. Then we generalize this sequence to a polynomial sequence which is associated with the Tribonacci polynomials. Next, we obtain some basic properties of the polynomial sequence.

References

  • Arslan, B. and Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Odd Integers, European Journal of Science and Technology, (28), pp. 352-356.
  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, pp. 67-69.
  • Hoggatt V. E. and Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, Vol. 11, pp. 457–465.
  • Kocer E. G. and Gedikli, H. (2016). Trivariate Fibonacci and Lucas polynomials,’’ Konuralp J. Math., 4, pp. 247–254.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Ramirez, J. L. and Sirvent, V. F. (2014). Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences, 17, Article 14.4.2.
  • Rybołowicz, B. & Tereszkiewicz, A. (2018). Generalized Tricobsthal and generalized Tribonacci polynomials,” Applied Mathematics and Computation, 325, pp. 297–308.
  • Yilmaz, N. and Taskara, N. (2014). Incomplete Tribonacci–Lucas Numbers and Polynomials.’’ Advances in Applied Clifford Algebras, 25, pp. 741-753.
  • Yogesh Kumar Gupta, Badshah, V. H., Mamta Singh, Kiran Sisodiya. (2016). Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. Vol. 4, No. 1, pp. 20-22.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Early Pub Date July 26, 2022
Publication Date July 31, 2022
Published in Issue Year 2022 Issue: 39

Cite

APA Arslan, B., & Uslu, K. (2022). Generalization of an Integer Sequence Associated with Tribonacci Numbers. Avrupa Bilim Ve Teknoloji Dergisi(39), 33-38. https://doi.org/10.31590/ejosat.1144208