Research Article
BibTex RIS Cite

Mercimekte AG ve AC Tekrarları ile Zenginleştirilmiş Kütüphanelerin TG ve TC Tekrarları ile Taranarak Yeni SSR Markörlerin Geliştirilmesi

Year 2022, Issue: 41, 54 - 58, 30.11.2022
https://doi.org/10.31590/ejosat.1075391

Abstract

Simple sequence repeats (SSRs) markörler, bitkilerde genetik ve genomik araştırmalarda yaygın olarak kullanılan önemli moleküler gereçlerdir. Ancak ekonomik öneme sahip serin iklim baklagil bitkilerinden mercimekte (Lens culinaris Medik.) bitkisinde bugüne kadar geliştirilen SSR markörü sayısı oldukça sınırlı kalmıştır. SSR markörlerin bu eksikliği, mercimek moleküler ıslah çalışmalarını sınırlayan başlıca faktörler arasında yer almaktadır. Bu çalışmada, mercimek bitkisinde SSR markörü geliştirmek için AC ve AG tekrarlarınca zenginleştirilmiş kütüphanelere ait 288 klon TG ve TC tekrarlarınca taranarak yeni 15 adet SSR markörü geliştirilmiştir. Polimorfizm gösteren markörlerden toplamda 18 allel üretilmiş ve Lc-MCu54 markörü en polimorfik markör olarak belirlenmiştir. Geliştirilen bu markörler mercimek bitkisinde moleküler temelli pek çok çalışmaya katkı sağlayacak niteliktedir.

Supporting Institution

TUBITAK

Project Number

2209A Projesi

Thanks

Bu çalışma TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında desteklenmiştir. Erciyes Üniversitesi Betül Ziya Eren Genom ve Kök Hücre Merkezine sağladığı laboratuvar imkânı ve desteği için teşekkür ederiz.

References

  • Andeden, E.E., Baloch, F.S., Çakır, E., Toklu, F., & Özkan, H. (2015). Development, characterization and mapping of microsatellite markers for lentil (Lens culinaris Medik.). Plant Breeding 134, 589–598.
  • Arumuganathan, K., & Earle, E.D., (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9, 208–218.
  • Bahl, P.N., Lal, S., & Sharma, B.M. (1993). Page: 1-10. “An overview of the production and problems in southeast Asia”. In: Lentil in South Asia. Proceedings of the seminar on lentils in South Asia, ICARDA. Editors: Erskine, W., Saxena, M.C. Aleppo, Syria.
  • Bakır, M., & Kahraman, A. (2019) Development of new SSR (simple sequence repeat) markers for lentils (Lens culinaris Medik.) from genomic library enriched with AG and AC microsatellites. Biochemical Genetics 57, 338-353.
  • Bloor, P.A., Barker, F.S., Watts, P.C., Noyes, H.A., & Kemp, S.J, (2001). Microsatellite libraries by enrichment. https://www.genomics.liv.ac.uk/animal/RESEARCH/MICROSAT.PDF Accessed 10 April 2018.
  • Durán, Y., Fratini, R., García, P., & De La Pérez Vega, M. (2004). An intersubspecific genetic map of Lens. Theoretical and Applied Genetics 108, 1265– 1273. FAOSTAT (2021) https://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Accessed 7 April 2018.
  • Ferguson, M.E., Maxted, N., van Slageren M., & Robertson, L.D. (2000). A reassessment of the taxonomy ofLens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot. J. Lin. Soc 133, 41–59.
  • Gan, Y., Hamel, C., O’Donovan, J. T., Cutforth, H., Zentner, R. P., Campbell, C. A., Niu, Y., & Poppy, L. (2015). Diversifying crop rotations with pulses enhances system productivity. Scientific Reports 51, 14625.
  • Gupta, P.K., Balyan, H.S., Sharma, P.C., Ramesh, B. (1996). Microsatellites in plants: a new class of molecular markers. Curr. Sci 70, 45–54.
  • Hamwieh, A., Udupa, S.M., Choumane, W., Sarker, A., Dreyer, F., Jung, C., & Baum, M. (2005). A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110, 669–677.
  • Hamwieh, A., Udupa, S.M., Sarkar, A., Jung, C., & Baum, M. (2009). Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59, 77–86.
  • Lefort, F., Lally, M., Thompson, D., & Douglas, G.C., (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally Ireland. Silvae Genet 47,5–6.
  • Muehlbauer, F.J. (1991). Page 49-73. “Use of introduced germplasm in cool season food legume cultivar development”. In: Use Of Plant Introductions In: Cultivar Development (Part 2). Editors: Shands, H.L., Wiesner, L.E. Crop Sci. Soc. Amer., Social publication.
  • Rahimi, M.H., Houshmand, S., Khodambashi, M., Shiran, B., & Mohammady, S. (2016). Effect of drought stress on agro-morphological traits of lentil (Lens culinaris Medik.) recombinant inbred lines. Bangladesh Journal of Agricultural Research 41, 207-219.
  • Ramdath, D. D., Lu, Z. H., Maharaj, P. L., Winberg, J., Brummer, Y., & Hawke, A. (2020). Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses. Foods 9, 175.
  • Saha, G.C., Sarker, A., Chen, W., Vandemark, G.J., & Muehlbauer F.J. (2010). Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50, 1831–1839.
  • Sarker, A., & Erskine,. W. (2006). Recent progress in the ancient lentil. J. Agric. Sci 100, 19–29.
  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K.H., & Nayyar, H. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science 8, 1776.
  • Singh, D., Singh, C.K., Taunk, J., Tomar, R.S.S., Chaturvedi, A.K., Gaikwad, K., & Pal, M. (2017). Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18, 206.
  • Singh, J., Sirari, A., Singh, H., Kumar, A., Jaidka, M., Mandahal, K. S., ... & Singh, S. (2021). Identifying and validating SSR markers linked with rust resistance in lentil (Lens culinaris). Plant Breeding. 00,1-9.
  • Taha, K., Berraho, E. B., El Attar, I., Dekkiche, S., Aurag, J., & Béna, G. (2018). Rhizobium laguerreae is the main nitrogen‐fixing symbiont of cultivated lentil (Lens culinaris) in Morocco. Systematic and Applied Microbiology. 41, 113– 121.
  • Techen, N., Arias, R.S, Glynn, N.C., Pan, Z., Khan, I.A., & Scheffler, B.E. (2010). Optimized construction of microsatellite-enriched libraries. Mol Ecol Resour 10,508–515.
  • Van Oss, H., Aron, Y., & Ladizinsky, G. (1997). Chloroplast DNA variation and evolution in the genus Lens Mill., Theor Appl Genet 94, 452–457.
  • Verma, P., Sharma, T.R., Srivastava, P.S., Abdin, M.Z., & Bhatia, S. (2014). Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41, 5607–5625.
  • Yolci, M. S. (2020). Erciş (Van) Ekolojik Koşullarında Bazı Fasulye (Phaseolus Vulgaris L.) Çeşitlerinin Verim ve Verim Unsurlarının Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 562-567. DOI: 10.31590/ejosat.693862 Zohari, D. (1972). The wild progenitor and place of the cultivated lentil (Lens culinaris). Economic Botany. 26, 236-332.

Development of New SSR Markers in Lentil by Scanning AG and AC Enriched Libraries with TG and TC Repeats

Year 2022, Issue: 41, 54 - 58, 30.11.2022
https://doi.org/10.31590/ejosat.1075391

Abstract

Simple sequence repeats (SSRs) markers are important molecular tools widely used in genetic and genomic research in plants. However, the number of SSR markers developed in lentils (Lens culinaris Medik.) so far, which is an economically important cool season legume plant, has been very limited. The lack of SSR markers is among the main factors limiting lentil molecular breeding studies. In this study, 288 clones belonging to the enriched libraries with AC and AG repeats were screened by TG and TC repeats to develop SSR markers in lentil plants and 15 new SSR markers were developed. A total of 18 alleles were generated from markers showing polymorphism, and the Lc-MCu54 marker was identified as the most polymorphic marker. These developed markers are capable of contributing to many molecular-based studies in lentil plants.

Project Number

2209A Projesi

References

  • Andeden, E.E., Baloch, F.S., Çakır, E., Toklu, F., & Özkan, H. (2015). Development, characterization and mapping of microsatellite markers for lentil (Lens culinaris Medik.). Plant Breeding 134, 589–598.
  • Arumuganathan, K., & Earle, E.D., (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9, 208–218.
  • Bahl, P.N., Lal, S., & Sharma, B.M. (1993). Page: 1-10. “An overview of the production and problems in southeast Asia”. In: Lentil in South Asia. Proceedings of the seminar on lentils in South Asia, ICARDA. Editors: Erskine, W., Saxena, M.C. Aleppo, Syria.
  • Bakır, M., & Kahraman, A. (2019) Development of new SSR (simple sequence repeat) markers for lentils (Lens culinaris Medik.) from genomic library enriched with AG and AC microsatellites. Biochemical Genetics 57, 338-353.
  • Bloor, P.A., Barker, F.S., Watts, P.C., Noyes, H.A., & Kemp, S.J, (2001). Microsatellite libraries by enrichment. https://www.genomics.liv.ac.uk/animal/RESEARCH/MICROSAT.PDF Accessed 10 April 2018.
  • Durán, Y., Fratini, R., García, P., & De La Pérez Vega, M. (2004). An intersubspecific genetic map of Lens. Theoretical and Applied Genetics 108, 1265– 1273. FAOSTAT (2021) https://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Accessed 7 April 2018.
  • Ferguson, M.E., Maxted, N., van Slageren M., & Robertson, L.D. (2000). A reassessment of the taxonomy ofLens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot. J. Lin. Soc 133, 41–59.
  • Gan, Y., Hamel, C., O’Donovan, J. T., Cutforth, H., Zentner, R. P., Campbell, C. A., Niu, Y., & Poppy, L. (2015). Diversifying crop rotations with pulses enhances system productivity. Scientific Reports 51, 14625.
  • Gupta, P.K., Balyan, H.S., Sharma, P.C., Ramesh, B. (1996). Microsatellites in plants: a new class of molecular markers. Curr. Sci 70, 45–54.
  • Hamwieh, A., Udupa, S.M., Choumane, W., Sarker, A., Dreyer, F., Jung, C., & Baum, M. (2005). A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110, 669–677.
  • Hamwieh, A., Udupa, S.M., Sarkar, A., Jung, C., & Baum, M. (2009). Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59, 77–86.
  • Lefort, F., Lally, M., Thompson, D., & Douglas, G.C., (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally Ireland. Silvae Genet 47,5–6.
  • Muehlbauer, F.J. (1991). Page 49-73. “Use of introduced germplasm in cool season food legume cultivar development”. In: Use Of Plant Introductions In: Cultivar Development (Part 2). Editors: Shands, H.L., Wiesner, L.E. Crop Sci. Soc. Amer., Social publication.
  • Rahimi, M.H., Houshmand, S., Khodambashi, M., Shiran, B., & Mohammady, S. (2016). Effect of drought stress on agro-morphological traits of lentil (Lens culinaris Medik.) recombinant inbred lines. Bangladesh Journal of Agricultural Research 41, 207-219.
  • Ramdath, D. D., Lu, Z. H., Maharaj, P. L., Winberg, J., Brummer, Y., & Hawke, A. (2020). Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses. Foods 9, 175.
  • Saha, G.C., Sarker, A., Chen, W., Vandemark, G.J., & Muehlbauer F.J. (2010). Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50, 1831–1839.
  • Sarker, A., & Erskine,. W. (2006). Recent progress in the ancient lentil. J. Agric. Sci 100, 19–29.
  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K.H., & Nayyar, H. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science 8, 1776.
  • Singh, D., Singh, C.K., Taunk, J., Tomar, R.S.S., Chaturvedi, A.K., Gaikwad, K., & Pal, M. (2017). Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18, 206.
  • Singh, J., Sirari, A., Singh, H., Kumar, A., Jaidka, M., Mandahal, K. S., ... & Singh, S. (2021). Identifying and validating SSR markers linked with rust resistance in lentil (Lens culinaris). Plant Breeding. 00,1-9.
  • Taha, K., Berraho, E. B., El Attar, I., Dekkiche, S., Aurag, J., & Béna, G. (2018). Rhizobium laguerreae is the main nitrogen‐fixing symbiont of cultivated lentil (Lens culinaris) in Morocco. Systematic and Applied Microbiology. 41, 113– 121.
  • Techen, N., Arias, R.S, Glynn, N.C., Pan, Z., Khan, I.A., & Scheffler, B.E. (2010). Optimized construction of microsatellite-enriched libraries. Mol Ecol Resour 10,508–515.
  • Van Oss, H., Aron, Y., & Ladizinsky, G. (1997). Chloroplast DNA variation and evolution in the genus Lens Mill., Theor Appl Genet 94, 452–457.
  • Verma, P., Sharma, T.R., Srivastava, P.S., Abdin, M.Z., & Bhatia, S. (2014). Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41, 5607–5625.
  • Yolci, M. S. (2020). Erciş (Van) Ekolojik Koşullarında Bazı Fasulye (Phaseolus Vulgaris L.) Çeşitlerinin Verim ve Verim Unsurlarının Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 562-567. DOI: 10.31590/ejosat.693862 Zohari, D. (1972). The wild progenitor and place of the cultivated lentil (Lens culinaris). Economic Botany. 26, 236-332.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şehriban Demir 0000-0002-1367-507X

Melike Bakır 0000-0003-3465-1453

Project Number 2209A Projesi
Early Pub Date October 2, 2022
Publication Date November 30, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Demir, Ş., & Bakır, M. (2022). Mercimekte AG ve AC Tekrarları ile Zenginleştirilmiş Kütüphanelerin TG ve TC Tekrarları ile Taranarak Yeni SSR Markörlerin Geliştirilmesi. Avrupa Bilim Ve Teknoloji Dergisi(41), 54-58. https://doi.org/10.31590/ejosat.1075391