Research Article
BibTex RIS Cite

Bir Mikrokanaldaki Kayma Akışında Basınç Kaybı Analizi

Year 2022, Issue: 41, 471 - 484, 30.11.2022
https://doi.org/10.31590/ejosat.1200616

Abstract

Karakteristik boyutları 1 µm'den 1 mm'ye kadar değişen mikro cihazlar, günümüzde kalp pilinden mürekkep püskürtmeli yazıcılara kadar birçok alanda başarılı bir şekilde kullanılmaktadır. Bunların içinde mikro pompalar veya mikro ısı eşanjörleri gibi mikro akışkanlı cihazlar (Micro Fludic Device, MFD) çok önemli bir yere sahiptir. MFD'lerin ana kullanıcıları, otomotiv ile uçak firmalarını içeren mikro elektronik, ecza, kimya, tıbbi ve gıda teknolojileri gibi sanayilerdir. Çalışmada, öncelikle projenin tanımı ve amacı hakkında bilgi verilmiş, mikrokanallar, kayma akışı ve hesaplamalı akışkan dinamiği hakkında literatür araştırması yapılıp genel bilgiler verilmiş, daha sonra yapılan çalışmalar detaylı bir şekilde gösterilip sonuçlandırılmıştır. Bu projede, bir mikrokanalda nitrojen gazının kayma akışı ANSYS Fluent 15.0 yazılımı kullanılarak sayısal olarak incelenmiştir. Çalışmada, yakınsalık açılarına ve hidrolik çapa bağlı olarak üçerli iki gruba ayrılıp, altı farklı mikrokanal kullanılmıştır. İlk üç çözüm aynı uzunluk, derinlik ve hidrolik çap kullanılırken, sırasıyla 4°, 8° ve 12°’lik yakınsaklık açıları ile yapılmıştır. Diğer gruptaki üç çözüm ise aynı uzunluk, derinlik ve yakınsaklık açısı kullanılırken sırasıyla 118, 147 ve 177 µm hidrolik çaplarda mikrokanallar kullanılarak yapılmıştır. Elde edilen basınç kayıpları kendi aralarında karşılaştırılmış ve yorumlanmıştır.

References

  • Dolu, C., Mikrokanal Isıl Performansı Üzerinde Kayma Akışı Modeli Hassasiyeti Etkilerinin Araştırılması. 2007, Fen Bilimleri Enstitüsü.
  • PARLAK, N., et al., Mikroborularda Su Akışının Termodinamik Analizi.
  • Hanoon, H.A. and A.K. Alshara, Performance Characteristics of Parallel Slip Flow Microchannel Heat Exchanger. Basrah Journal for Engineering Science, 2011. 11(1): p. 16-30.
  • Sobhan, C. and G. Peterson, A review of convective heat transfer in microchannels. Mühendis ve Makina, 2006. 557: p. 10-67.
  • Chen, C., S. Lee, and J. Sheu, Numerical analysis of gas flow in microchannels. Numerical Heat Transfer, Part A Applications, 1998. 33(7): p. 749-762.
  • Rapp, B.E., Microfluidics: Modeling, Mechanics and Mathematics. 2016: William Andrew.
  • Anderson, J.D., Governing equations of fluid dynamics, in Computational fluid dynamics. 1992, Springer. p. 15-51.
  • Pawar, R., Patil, R., Patil, D., Rahegaonkar, A., Pardeshi, S., & Patange, A. (2022). Development of a Model for Predicting Brake Friction Lining Thickness and Brake Temperature. International Journal of Prognostics and Health Management, 13(1).
  • Mingozzi, F., Verdin, P. G., Gucci, L., & Tirovic, M. (2022). CFD and experimental study of heat dissipation from an anti-coning, pin vented, inboard mounted brake disc. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 09544070221126216.
  • Alavi, S. H., & Eipakchi, H. (2019). Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines, 47(4), 497-519.
  • Cravero, C., & Marsano, D. (2022). Flow and thermal analysis of a racing car braking system. Energies, 15(8), 2934.
  • Yun, C. M., Cho, G. J., Kim, H., & Jung, H. (2022). A Study on the Train Brake Position-Based Control Method for Regenerative Inverters. Energies, 15(18), 6572.
  • E. Öztürk, O. Özcan, E. Aslan, And K. Kaya, “Pürüzlü Silindir Etrafındaki Türbülanslı Akışın Sayısal Olarak İncelenmesi,” Presented At The 4. Uluslararası Erciyes Bilimsel Araştırmalar Kongresi, Kayseri, 2020.
  • Belhocine, A., & Abdullah, O. I. (2022). Finite element analysis (FEA) of frictional contact phenomenon on vehicle braking system. Mechanics based design of structures and machines, 50(9), 2961-2996.
  • Preda, C., Bleotu, R. M., & Pinca-Bretotean, C. (2022, February). Study and thermal analysis of vanes shape design for brake disc in automotive industry. In Journal of Physics: Conference Series (Vol. 2212, No. 1, p. 012025). IOP Publishing.
  • Kaya, K., & Özcan, O. (2021). An approximate analytic solution of uniform laminar flow in a circular open channel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(6), 1-9.
  • Wang, Y., Xu, R., & Zhang, K. (2022). A car-following model for mixed traffic flows in intelligent connected vehicle environment considering driver response characteristics. Sustainability, 14(17), 11010.
  • Kuraishi, T., Terahara, T., Takizawa, K., & Tezduyar, T. E. (2022). Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. Journal of Mechanics, 38, 77-87.
  • Putra, M. R. A., Nizam, M., Tjahjana, D. D. D. P., Arifin, Z., Lenggana, B. W., & Inayati, I. (2022). Analysis of Heat Generation on Unipolar Axial Eddy Current Brake Disc and Its Effect on Braking Performance. World Electric Vehicle Journal, 13(10), 180.

Pressure Loss Analysis in Shear Flow in a Microchannel

Year 2022, Issue: 41, 471 - 484, 30.11.2022
https://doi.org/10.31590/ejosat.1200616

Abstract

Micro devices with a characteristic size ranging from 1 µm to 1 mm are used successfully in many fields from pacemakers to inkjet printers. Among these, micro fluid devices such as micro pumps or micro heat exchangers (Micro Fludic Device, MFD) have a very important place. The main users of MFDs are industries such as micro electronics including automotive and aircraft companies, pharmaceuticals, chemistry, medical and food technologies.In the study, firstly, information was given about the definition and purpose of the project, literature research was made and general information was given about microchannels, slip flow and computational fluid dynamics, and then the studies were shown and concluded in detail.In this project, the slip flow of nitrogen gas in a microchannel was investigated numerically using ANSYS Fluent 15.0 software. In the study, depending on the convergence angles and hydraulic diameters, they were divided into two groups of three and six different microchannels were used. The first three solutions were made with convergence angles of 4°, 8° and 12°, while using the same length, depth and hydraulic diameter. Three solutions in the other group were made using microchannels with hydraulic diameters of 118, 147 and 177 µm respectively, while using the same length, depth and convergence angle. The obtained pressure losses were compared and interpreted among themselves.

References

  • Dolu, C., Mikrokanal Isıl Performansı Üzerinde Kayma Akışı Modeli Hassasiyeti Etkilerinin Araştırılması. 2007, Fen Bilimleri Enstitüsü.
  • PARLAK, N., et al., Mikroborularda Su Akışının Termodinamik Analizi.
  • Hanoon, H.A. and A.K. Alshara, Performance Characteristics of Parallel Slip Flow Microchannel Heat Exchanger. Basrah Journal for Engineering Science, 2011. 11(1): p. 16-30.
  • Sobhan, C. and G. Peterson, A review of convective heat transfer in microchannels. Mühendis ve Makina, 2006. 557: p. 10-67.
  • Chen, C., S. Lee, and J. Sheu, Numerical analysis of gas flow in microchannels. Numerical Heat Transfer, Part A Applications, 1998. 33(7): p. 749-762.
  • Rapp, B.E., Microfluidics: Modeling, Mechanics and Mathematics. 2016: William Andrew.
  • Anderson, J.D., Governing equations of fluid dynamics, in Computational fluid dynamics. 1992, Springer. p. 15-51.
  • Pawar, R., Patil, R., Patil, D., Rahegaonkar, A., Pardeshi, S., & Patange, A. (2022). Development of a Model for Predicting Brake Friction Lining Thickness and Brake Temperature. International Journal of Prognostics and Health Management, 13(1).
  • Mingozzi, F., Verdin, P. G., Gucci, L., & Tirovic, M. (2022). CFD and experimental study of heat dissipation from an anti-coning, pin vented, inboard mounted brake disc. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 09544070221126216.
  • Alavi, S. H., & Eipakchi, H. (2019). Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines, 47(4), 497-519.
  • Cravero, C., & Marsano, D. (2022). Flow and thermal analysis of a racing car braking system. Energies, 15(8), 2934.
  • Yun, C. M., Cho, G. J., Kim, H., & Jung, H. (2022). A Study on the Train Brake Position-Based Control Method for Regenerative Inverters. Energies, 15(18), 6572.
  • E. Öztürk, O. Özcan, E. Aslan, And K. Kaya, “Pürüzlü Silindir Etrafındaki Türbülanslı Akışın Sayısal Olarak İncelenmesi,” Presented At The 4. Uluslararası Erciyes Bilimsel Araştırmalar Kongresi, Kayseri, 2020.
  • Belhocine, A., & Abdullah, O. I. (2022). Finite element analysis (FEA) of frictional contact phenomenon on vehicle braking system. Mechanics based design of structures and machines, 50(9), 2961-2996.
  • Preda, C., Bleotu, R. M., & Pinca-Bretotean, C. (2022, February). Study and thermal analysis of vanes shape design for brake disc in automotive industry. In Journal of Physics: Conference Series (Vol. 2212, No. 1, p. 012025). IOP Publishing.
  • Kaya, K., & Özcan, O. (2021). An approximate analytic solution of uniform laminar flow in a circular open channel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(6), 1-9.
  • Wang, Y., Xu, R., & Zhang, K. (2022). A car-following model for mixed traffic flows in intelligent connected vehicle environment considering driver response characteristics. Sustainability, 14(17), 11010.
  • Kuraishi, T., Terahara, T., Takizawa, K., & Tezduyar, T. E. (2022). Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. Journal of Mechanics, 38, 77-87.
  • Putra, M. R. A., Nizam, M., Tjahjana, D. D. D. P., Arifin, Z., Lenggana, B. W., & Inayati, I. (2022). Analysis of Heat Generation on Unipolar Axial Eddy Current Brake Disc and Its Effect on Braking Performance. World Electric Vehicle Journal, 13(10), 180.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erhan Öztürk 0000-0002-5221-9843

Ramazan Çoştu 0000-0002-0547-7655

Kenan Kaya 0000-0002-6897-4077

Early Pub Date October 2, 2022
Publication Date November 30, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Öztürk, E., Çoştu, R., & Kaya, K. (2022). Bir Mikrokanaldaki Kayma Akışında Basınç Kaybı Analizi. Avrupa Bilim Ve Teknoloji Dergisi(41), 471-484. https://doi.org/10.31590/ejosat.1200616