Research Article
BibTex RIS Cite

Fen Bilimleri Öğretmen Adaylarının Fen-Teknoloji-Mühendislik-Matematik (FeTeMM)’e Yönelik Özyeterlik Ölçeği: Türkçe’ye Uyarlama, Geçerlik ve Güvenirlik Çalışması

Year 2019, Volume: 15 Issue: 1, 88 - 107, 25.03.2019
https://doi.org/10.17244/eku.395204

Abstract

Bu
araştırmanın amacı, Friday Institute for Educational Innovation (2012a)
tarafından geliştirilen Fen Bilimleri Öğretmenlerinin FeTeMM’e Yönelik
Özyeterlik ve Tutumları Ölçeği’nin Fen Bilimleri öğretmen adaylarının
özyeterlik düzeyini belirlemeye uygun olacak şekilde Türkçe’ye uyarlanmasıdır.
Araştırmanın çalışma grubunu; çeşitli üniversitelerde Matematik ve Fen
Bilimleri Eğitimi Bölümü, Fen Bilgisi Eğitimi Anabilim Dalı 3. ve 4. sınıf
düzeyinde öğrenim gören 392 Fen Bilimleri öğretmen adayı oluşturmaktadır.
Ölçeğin yapı geçerliliğini incelemek için ölçeğin tümüne açımlayıcı faktör
analizi yapılmıştır. Bu analizin ardından; orijinal ölçeğin ilk iki boyutu olan
Fen Bilimleri öğretiminde özyeterlik inancı ve Fen Bilimleri öğretimi sonucu
beklentileri boyutlarının Fen Bilimleri öğretmen adaylarının özyeterlik
düzeyini belirlediği tespit edilmiştir. Bu nedenle orijinal ölçeğin ilk iki
boyutuna doğrulayıcı faktör analizi yapılmış, güvenirliğini incelemek için iç
tutarlılık katsayısı hesaplanmış ve test-tekrar test yöntemi kullanılmıştır.
Güvenirlik analizi sonucunda ölçeğin iç tutarlılık katsayısı .808 olarak
hesaplanmıştır. Yapılan analizlerden elde edilen veriler sonucunda, 2 boyuttan
ve 12 maddeden oluşan ölçeğin eğitim alanında kullanılabilecek geçerli ve
güvenilir bir ölçme aracı olduğu ortaya çıkmıştır.

References

  • Asunda, P. A. (2011). Open courseware and STEM initiatives in career and technical education. Journal of STEM Education, 48(2), 6-37.
  • Avery, Z. K., & Reeve, E. M. (2013). Developing effective STEM professional development programs. Journal Of Technology Education, 25(1), 55-69.
  • Balka, D. (2011). Standards of mathematical practice and STEM. Stillwater, OK: School Science and Mathematics Association.
  • Blair, N. (2012, January/February). Technology integration for the new 21st century learner. Principal, 91(3), 8-13.
  • Buyruk, B., & Korkmaz, Ö. (2016). FeTeMM Farkındalık Ölçeği (FFÖ): Geçerlik ve güvenirlik çalışması. Journal of Turkish Science Education, 11(1), 3-23.
  • Büyüköztürk, Ş. (2014). Veri analizi el kitabı (19. Baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. ve Demirel, F. (2011). Bilimsel araştırma yöntemleri (8. Baskı). Ankara: Pegem Akademi.
  • Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities. Arlington, Virginia: National Science Teachers Association (NSTA) Press.
  • Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science, technology, engineering, mathematics. Washington, D.C.: Georgetown University.
  • Chen, X. (2015). STEM attrition among high-performing college students: Scope and potential causes. Journal of Technology and Science Education, 5(1), 41-59.
  • Child, D. (2006). The essentials of factor analysis. 3rd ed. New York: Continuum International Publishing Group.
  • Christensen, R. & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. Journal of Education in Science, Environment and Health (JESEH), 3(1), 1-13.
  • Çorlu, M. A., Adıgüzel, T., Ayar, M. C., Çorlu, M. S. ve Özel, S. (2012, Haziran). Bilim, Teknoloji, Mühendislik ve Matematik (BTMM) Eğitimi: Disiplinlerarası çalışmalar ve etkileşimler. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Niğde, Türkiye.
  • Derin, G., Aydın, E., & Kırkıç, K. A. (2017). STEM (Fen-Teknoloji-Mühendislik–Matematik) eğitimi tutum ölçeği. El-Cezeri Journal of Science and Engineering, 4(3), 547-559.
  • Friday Institute for Educational Innovation (2012a). Teacher efficacy and attitudes toward STEM survey-science teachers. Raleigh, NC: Author.
  • Friday Institute for Educational Innovation (2012b). Teacher efficacy and attitudes toward STEM (T-STEM) survey: Development and psychometric properties. Raleigh, NC: Author.
  • Fulton, K., & Britton, T. (2011). STEM teachers in professional learning communities: From good teachers to great teaching. Washington, DC: National Commission on Teaching and America's Future.
  • Fulton, K., Doerr, H., & Britton, T. (2010). STEM teachers in professional learning communities: A knowledge synthesis. Washington DC: National Commission on Teaching and America’s Future.
  • Hacıömeroğlu, G., & Bulut, A. S. (2016). Entegre FeTeMM öğretimi yönelim ölçeği Türkçe formunun geçerlik ve güvenirlik çalışması. Eğitimde Kuram ve Uygulama, 12(3), 654-669.
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
  • Karaca, E., Yurdabakan, G., Çetin, B., Nartgün, Z., Bıçak, B ve Gömleksiz, M. (2014). Eğitimde ölçme ve değerlendirme (3. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Katzenmeyer, C., & Lawrenz, F. (2006). National Science Foundation perspectives on the nature of STEM program evaluation. New Directions for Evaluation, 109, 7-18.
  • Kızılay, E. (2017). STEM semantik farklılık ölçeği'nin Türkçeye uyarlanması. The Journal of Academic Social Science Studies, 58, 131-144.
  • Krajcik, J., & Delen, I. (2017). How to support learners in developing usable and lasting knowledge of STEM. International Journal of Education in Mathematics, Science and Technology, 5(1), 21-28.
  • Larson, L. C., & Miller, T. N. (2011). 21st century skills: Prepare students for the future. Kappa Delta Pi Record, 47(3), 121-123.
  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84-99.
  • McDonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27(4), 530-569.
  • National Research Council (2014). STEM Integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press.
  • National Science Board (2015). Revisiting the STEM workforce: A companion to science and engineering ındicators 2014. Arlington, VA: National Science Foundation.
  • Patel, M., & Yelland, R. (2006). 21st century learning environments. Danvers, MA: OECD Publishing.
  • Radloff, J., & Guzey, S. (2016). Investigating Preservice STEM Teacher Conceptions of STEM Education. Journal of Science Education and Technology, 25(5), 759-774.
  • Rissanen, A. J. (2014). Active and peer learning in STEM education strategy. Science Education International, 25(1), 1-7.
  • Roberts, A. (2012). A justification for STEM education. Technology and Engineering Teacher, 72(8), 1-5.
  • Rogers, R. R., Winship, J., & Sun, Y. (2015). Systematic Support for STEM Pre-Service Teachers: An Authentic and Sustainable Four Innovative Professional Development Methods and Strategies for STEM Education. Hershey, PN: IGI Global.
  • Sanders, M.E. (2013). Integrative STEM education defined. National Dropout Prevention Center/Network Newsletter, 24(1), 6.
  • Seçer, İ. (2015). SPSS ve LISREL ile pratik veri analizi. Ankara: Anı Yayıncılık.
  • Sithole, A., Chiyaka, E. T., McCarthy, P., Mupinga, D. M., Bucklein, B. K., & Kibirige, J. (2017). Student attraction, persistence and retention in STEM programs: Successes and continuing challenges. Higher Education Studies, 7(1), 46-59.
  • Şeker, H, & Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme (2. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Tavşancıl, E. (2014). Tutumların ölçülmesi ve SPSS ile veri analizi (5. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Thompson, K. & Kanasa, H. (2016). Designing and Analysing STEM Studios for preservice teacher education. In S. Barker, S. Dawson, A. Pardo, & C. Colvin (Eds.), Show Me The Learning. Proceedings ASCILITE Adelaide (pp. 566-570).
  • Trilling, B., Fadel, C., & Partnership for 21st Century Skills. (2009). 21st century skills: Learning for life in our times. San Francisco: Jossey-Bass.
  • Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM education in Southwestern Pennsylvania. Report of a project to identify the missing components. Pennsylvania: Leonard Gelfand Center for Service Learning and Outreach at Carnegie Mellon University and The Intermediate Unit 1 Center for STEM Education.
  • Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in STEM content and careers. Journal of Technology and Teacher Education, 18(2), 345-368.
  • Valenti, S. S., Masnick, A. M., Cox, B. D., & Osman, C. J. (2016). Adolescents' and Emerging Adults' Implicit Attitudes about STEM Careers:" Science Is Not Creative". Science Education International, 27(1), 40-58.
  • Wagner, T. (2014). The global achievement gap: Why even our best schools don’t teach the new survivals skills our children need-and what we can do about it. New York: Basic Books.
  • Wyss, V. L., Heulskamp, D., & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International Journal of Environmental and Science Education, 7(4), 501-522.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.

Pre-Service Science Teachers’ Self-Efficacy toward Science, Technology, Engineering, Mathematics (STEM) Survey: An Adaptation to Turkish, Validity and Reliability Study

Year 2019, Volume: 15 Issue: 1, 88 - 107, 25.03.2019
https://doi.org/10.17244/eku.395204

Abstract

The aim of this research is to adapt Teacher Efficacy
and Attitudes Toward STEM Survey-Science Teachers Scale developed by the Friday
Institute for Educational Innovation (2012a) to Turkish. This scale was adapted
to Turkish to be determine the self-efficacy level of pre-service Science
teachers. The study group of this research was constituted by 392 pre-service
Science teachers who are studying at the 3rd and 4th grade levels of Department
of Mathematics and Science Education, Science Education Program. In order to
examine the construct validity of the scale, exploratory factor analysis was
performed to whole scale. Following this analysis; it was found that Science
Teaching Efficacy factor and Beliefs and Science Teaching Outcome Expectancy
factor, the first two factors of the original scale, were determined the
self-efficacy levels of pre-service Science teachers. Therefore; confirmatory
factor analysis was performed to the first two factors of the original scale,
the internal consistency coefficient was calculated and the test-retest method
was used to assess the reliability of scale. As a result of the reliability
analysis, the internal consistency coefficient was found as .808. According to
data obtained from analysis, it has been revealed that the scale consisting of
2 factors and 12 items is a valid and reliable instrument which can be used in
the field of education.

References

  • Asunda, P. A. (2011). Open courseware and STEM initiatives in career and technical education. Journal of STEM Education, 48(2), 6-37.
  • Avery, Z. K., & Reeve, E. M. (2013). Developing effective STEM professional development programs. Journal Of Technology Education, 25(1), 55-69.
  • Balka, D. (2011). Standards of mathematical practice and STEM. Stillwater, OK: School Science and Mathematics Association.
  • Blair, N. (2012, January/February). Technology integration for the new 21st century learner. Principal, 91(3), 8-13.
  • Buyruk, B., & Korkmaz, Ö. (2016). FeTeMM Farkındalık Ölçeği (FFÖ): Geçerlik ve güvenirlik çalışması. Journal of Turkish Science Education, 11(1), 3-23.
  • Büyüköztürk, Ş. (2014). Veri analizi el kitabı (19. Baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. ve Demirel, F. (2011). Bilimsel araştırma yöntemleri (8. Baskı). Ankara: Pegem Akademi.
  • Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities. Arlington, Virginia: National Science Teachers Association (NSTA) Press.
  • Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science, technology, engineering, mathematics. Washington, D.C.: Georgetown University.
  • Chen, X. (2015). STEM attrition among high-performing college students: Scope and potential causes. Journal of Technology and Science Education, 5(1), 41-59.
  • Child, D. (2006). The essentials of factor analysis. 3rd ed. New York: Continuum International Publishing Group.
  • Christensen, R. & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. Journal of Education in Science, Environment and Health (JESEH), 3(1), 1-13.
  • Çorlu, M. A., Adıgüzel, T., Ayar, M. C., Çorlu, M. S. ve Özel, S. (2012, Haziran). Bilim, Teknoloji, Mühendislik ve Matematik (BTMM) Eğitimi: Disiplinlerarası çalışmalar ve etkileşimler. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Niğde, Türkiye.
  • Derin, G., Aydın, E., & Kırkıç, K. A. (2017). STEM (Fen-Teknoloji-Mühendislik–Matematik) eğitimi tutum ölçeği. El-Cezeri Journal of Science and Engineering, 4(3), 547-559.
  • Friday Institute for Educational Innovation (2012a). Teacher efficacy and attitudes toward STEM survey-science teachers. Raleigh, NC: Author.
  • Friday Institute for Educational Innovation (2012b). Teacher efficacy and attitudes toward STEM (T-STEM) survey: Development and psychometric properties. Raleigh, NC: Author.
  • Fulton, K., & Britton, T. (2011). STEM teachers in professional learning communities: From good teachers to great teaching. Washington, DC: National Commission on Teaching and America's Future.
  • Fulton, K., Doerr, H., & Britton, T. (2010). STEM teachers in professional learning communities: A knowledge synthesis. Washington DC: National Commission on Teaching and America’s Future.
  • Hacıömeroğlu, G., & Bulut, A. S. (2016). Entegre FeTeMM öğretimi yönelim ölçeği Türkçe formunun geçerlik ve güvenirlik çalışması. Eğitimde Kuram ve Uygulama, 12(3), 654-669.
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
  • Karaca, E., Yurdabakan, G., Çetin, B., Nartgün, Z., Bıçak, B ve Gömleksiz, M. (2014). Eğitimde ölçme ve değerlendirme (3. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Katzenmeyer, C., & Lawrenz, F. (2006). National Science Foundation perspectives on the nature of STEM program evaluation. New Directions for Evaluation, 109, 7-18.
  • Kızılay, E. (2017). STEM semantik farklılık ölçeği'nin Türkçeye uyarlanması. The Journal of Academic Social Science Studies, 58, 131-144.
  • Krajcik, J., & Delen, I. (2017). How to support learners in developing usable and lasting knowledge of STEM. International Journal of Education in Mathematics, Science and Technology, 5(1), 21-28.
  • Larson, L. C., & Miller, T. N. (2011). 21st century skills: Prepare students for the future. Kappa Delta Pi Record, 47(3), 121-123.
  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84-99.
  • McDonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27(4), 530-569.
  • National Research Council (2014). STEM Integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press.
  • National Science Board (2015). Revisiting the STEM workforce: A companion to science and engineering ındicators 2014. Arlington, VA: National Science Foundation.
  • Patel, M., & Yelland, R. (2006). 21st century learning environments. Danvers, MA: OECD Publishing.
  • Radloff, J., & Guzey, S. (2016). Investigating Preservice STEM Teacher Conceptions of STEM Education. Journal of Science Education and Technology, 25(5), 759-774.
  • Rissanen, A. J. (2014). Active and peer learning in STEM education strategy. Science Education International, 25(1), 1-7.
  • Roberts, A. (2012). A justification for STEM education. Technology and Engineering Teacher, 72(8), 1-5.
  • Rogers, R. R., Winship, J., & Sun, Y. (2015). Systematic Support for STEM Pre-Service Teachers: An Authentic and Sustainable Four Innovative Professional Development Methods and Strategies for STEM Education. Hershey, PN: IGI Global.
  • Sanders, M.E. (2013). Integrative STEM education defined. National Dropout Prevention Center/Network Newsletter, 24(1), 6.
  • Seçer, İ. (2015). SPSS ve LISREL ile pratik veri analizi. Ankara: Anı Yayıncılık.
  • Sithole, A., Chiyaka, E. T., McCarthy, P., Mupinga, D. M., Bucklein, B. K., & Kibirige, J. (2017). Student attraction, persistence and retention in STEM programs: Successes and continuing challenges. Higher Education Studies, 7(1), 46-59.
  • Şeker, H, & Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme (2. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Tavşancıl, E. (2014). Tutumların ölçülmesi ve SPSS ile veri analizi (5. Basım). Ankara: Nobel Akademik Yayıncılık.
  • Thompson, K. & Kanasa, H. (2016). Designing and Analysing STEM Studios for preservice teacher education. In S. Barker, S. Dawson, A. Pardo, & C. Colvin (Eds.), Show Me The Learning. Proceedings ASCILITE Adelaide (pp. 566-570).
  • Trilling, B., Fadel, C., & Partnership for 21st Century Skills. (2009). 21st century skills: Learning for life in our times. San Francisco: Jossey-Bass.
  • Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM education in Southwestern Pennsylvania. Report of a project to identify the missing components. Pennsylvania: Leonard Gelfand Center for Service Learning and Outreach at Carnegie Mellon University and The Intermediate Unit 1 Center for STEM Education.
  • Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in STEM content and careers. Journal of Technology and Teacher Education, 18(2), 345-368.
  • Valenti, S. S., Masnick, A. M., Cox, B. D., & Osman, C. J. (2016). Adolescents' and Emerging Adults' Implicit Attitudes about STEM Careers:" Science Is Not Creative". Science Education International, 27(1), 40-58.
  • Wagner, T. (2014). The global achievement gap: Why even our best schools don’t teach the new survivals skills our children need-and what we can do about it. New York: Basic Books.
  • Wyss, V. L., Heulskamp, D., & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International Journal of Environmental and Science Education, 7(4), 501-522.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Makaleler
Authors

Burcu Gelen 0000-0001-8630-087X

Behiye Akçay 0000-0002-0546-8759

Aydın Tiryaki This is me 0000-0001-5888-1689

İbrahim Benek 0000-0002-7124-4905

Publication Date March 25, 2019
Submission Date February 15, 2018
Published in Issue Year 2019 Volume: 15 Issue: 1

Cite

APA Gelen, B., Akçay, B., Tiryaki, A., Benek, İ. (2019). Fen Bilimleri Öğretmen Adaylarının Fen-Teknoloji-Mühendislik-Matematik (FeTeMM)’e Yönelik Özyeterlik Ölçeği: Türkçe’ye Uyarlama, Geçerlik ve Güvenirlik Çalışması. Eğitimde Kuram Ve Uygulama, 15(1), 88-107. https://doi.org/10.17244/eku.395204