Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 152 - 157, 20.12.2020
https://doi.org/10.26701/ems.742973

Abstract

References

  • Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B. (2010). Fundamentals of Engineering Thermodynamics. John Wiley & Sons.
  • Dingeç, H., İleri, A. (1999). Thermoeconomic optimization of simple refrigerators. Int J Energy Research, 23(11): 949-962, DOI:10.1002/(SICI)1099-114X(199909)23:11<949::AID-ER531>3.0.CO;2-A
  • Selbaş, R., Kızılkan, Ö., Şencan, A. (2006). Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy, 31(12): 2108-28, DOI:10.1016/j.energy.2005.10.015
  • Bilgili, M., Cardak, E., Aktas, A. E. (2017). Thermodynamic analysis of bus air conditioner working with refrigerant R600a. European Mechanical Science 2017, 1(2): 69-75, DOI:10.26701/ems.321874.
  • Yılmaz, A., Aktas, A. E. (2019). Comparative analysis of ejector refrigeration system powered with engine exhaust heat using R134a and R245fa. European Mechanical Science, 3(1): 13-17, DOI:10.26701/ems.430831.
  • Beşer, E.,Mobedi, M. (1999). Soğutma sistemlerinde soğutucu akışkanın aşırı soğutulmasının incelenmesi. IV. Ulusal Tesisat Mühendisliği Kongresi, Conference Proceedings, p.695-706.
  • Kızılkan, Ö., Selbaş, R., Şencan, A. (2006). Buhar sıkıştırmalı soğutma sistemlerinde aşırı soğutma ve aşırı kızdırma etkisinin ısıl ekonomik açıdan incelenmesi. Gazi Üniversitesi Mühendislik Mimimarlık Fakültesi Dergisi, 21(2): 387-393.
  • Yan, G., Liu, Y., Qian, S., Yu, J. (2019). Theoretical study on a vapor compression refrigeration system with cold storage for freezer applications. Applied Thermal Engineering, 160: 114091, DOI: 10.1016/j.applthermaleng.2019.114091.
  • Chen, E., Li, Z., Yu, J., Xu, Y., Yu, Y. (2019). Experimental research of increased cooling output by dedicated subcooling. Applied Thermal Engineering, 154: 9–17, DOI: 10.1016/j.applthermaleng.2019.03.071.
  • Bellos, E., Tzivanidis, C. (2019). A Comparative Study of CO2 Refrigeration Systems. Energy Conversion and Management: X, 1, Article 100002, DOI: 10.1016/j.ecmx.2018.100002.
  • Wang, G.-B., Zhang, X.-R. (2019) Thermoeconomic optimization and comparison of the simple single-stage transcritical carbon dioxide vapor compression cycle with different subcooling methods for district heating and cooling. Energy Conversion and Management, 185: 740-757, DOI: 10.1016/j.enconman.2019.02.024.
  • Cengel, Y. A., Boles, M. A. (2015). Thermodynamic: an engineering approach. McGraw-Hill Education, New York.
  • Hepbasli, A., Akdemir, O. (2004). Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management, 45 (5): 737-753, DOI:10.1016/S0196-8904(03)00185-7.
  • Brunin, O., Feidt, M., Hivet, B. (1997). Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration, 20(5): 308-318, DOI:10.1016/S0140-7007(97)00025-X.
  • Karaçaylı, İ., Şimşek, E. (2019). Irreversibility analysis of a minibus air-conditioner for different condensation pressures. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(2): 171-180, DOI:10.21605/cukurovaummfd.609114.

Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle

Year 2020, Volume: 4 Issue: 4, 152 - 157, 20.12.2020
https://doi.org/10.26701/ems.742973

Abstract

The aim of this study is to investigate the effects of superheating and subcooling values on the cooling performance of a vapor compression refrigeration cycle. For this purpose, a refrigeration cycle with cooling capacity of 8 kW using R404A was examined by changing superheating and subcooling values. Energy, exergy and entropy balances were applied for evaporation and condensation temperatures of 0℃ and 45℃, respectively. In order to evaluate the performance of the refrigeration cycle, coefficient of performance (COP) for cooling, the amount of energy transfer, rate of exergy destruction and rational exergy efficiency of the all components (evaporator, compressor, condenser and expansion valve) and the whole system were determined.

References

  • Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B. (2010). Fundamentals of Engineering Thermodynamics. John Wiley & Sons.
  • Dingeç, H., İleri, A. (1999). Thermoeconomic optimization of simple refrigerators. Int J Energy Research, 23(11): 949-962, DOI:10.1002/(SICI)1099-114X(199909)23:11<949::AID-ER531>3.0.CO;2-A
  • Selbaş, R., Kızılkan, Ö., Şencan, A. (2006). Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy, 31(12): 2108-28, DOI:10.1016/j.energy.2005.10.015
  • Bilgili, M., Cardak, E., Aktas, A. E. (2017). Thermodynamic analysis of bus air conditioner working with refrigerant R600a. European Mechanical Science 2017, 1(2): 69-75, DOI:10.26701/ems.321874.
  • Yılmaz, A., Aktas, A. E. (2019). Comparative analysis of ejector refrigeration system powered with engine exhaust heat using R134a and R245fa. European Mechanical Science, 3(1): 13-17, DOI:10.26701/ems.430831.
  • Beşer, E.,Mobedi, M. (1999). Soğutma sistemlerinde soğutucu akışkanın aşırı soğutulmasının incelenmesi. IV. Ulusal Tesisat Mühendisliği Kongresi, Conference Proceedings, p.695-706.
  • Kızılkan, Ö., Selbaş, R., Şencan, A. (2006). Buhar sıkıştırmalı soğutma sistemlerinde aşırı soğutma ve aşırı kızdırma etkisinin ısıl ekonomik açıdan incelenmesi. Gazi Üniversitesi Mühendislik Mimimarlık Fakültesi Dergisi, 21(2): 387-393.
  • Yan, G., Liu, Y., Qian, S., Yu, J. (2019). Theoretical study on a vapor compression refrigeration system with cold storage for freezer applications. Applied Thermal Engineering, 160: 114091, DOI: 10.1016/j.applthermaleng.2019.114091.
  • Chen, E., Li, Z., Yu, J., Xu, Y., Yu, Y. (2019). Experimental research of increased cooling output by dedicated subcooling. Applied Thermal Engineering, 154: 9–17, DOI: 10.1016/j.applthermaleng.2019.03.071.
  • Bellos, E., Tzivanidis, C. (2019). A Comparative Study of CO2 Refrigeration Systems. Energy Conversion and Management: X, 1, Article 100002, DOI: 10.1016/j.ecmx.2018.100002.
  • Wang, G.-B., Zhang, X.-R. (2019) Thermoeconomic optimization and comparison of the simple single-stage transcritical carbon dioxide vapor compression cycle with different subcooling methods for district heating and cooling. Energy Conversion and Management, 185: 740-757, DOI: 10.1016/j.enconman.2019.02.024.
  • Cengel, Y. A., Boles, M. A. (2015). Thermodynamic: an engineering approach. McGraw-Hill Education, New York.
  • Hepbasli, A., Akdemir, O. (2004). Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management, 45 (5): 737-753, DOI:10.1016/S0196-8904(03)00185-7.
  • Brunin, O., Feidt, M., Hivet, B. (1997). Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration, 20(5): 308-318, DOI:10.1016/S0140-7007(97)00025-X.
  • Karaçaylı, İ., Şimşek, E. (2019). Irreversibility analysis of a minibus air-conditioner for different condensation pressures. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(2): 171-180, DOI:10.21605/cukurovaummfd.609114.
There are 15 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

İbrahim Karaçaylı 0000-0002-4459-1450

Erdoğan Şimşek This is me 0000-0001-8330-1842

Publication Date December 20, 2020
Acceptance Date June 19, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Karaçaylı, İ., & Şimşek, E. (2020). Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle. European Mechanical Science, 4(4), 152-157. https://doi.org/10.26701/ems.742973
AMA Karaçaylı İ, Şimşek E. Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle. EMS. December 2020;4(4):152-157. doi:10.26701/ems.742973
Chicago Karaçaylı, İbrahim, and Erdoğan Şimşek. “Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle”. European Mechanical Science 4, no. 4 (December 2020): 152-57. https://doi.org/10.26701/ems.742973.
EndNote Karaçaylı İ, Şimşek E (December 1, 2020) Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle. European Mechanical Science 4 4 152–157.
IEEE İ. Karaçaylı and E. Şimşek, “Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle”, EMS, vol. 4, no. 4, pp. 152–157, 2020, doi: 10.26701/ems.742973.
ISNAD Karaçaylı, İbrahim - Şimşek, Erdoğan. “Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle”. European Mechanical Science 4/4 (December 2020), 152-157. https://doi.org/10.26701/ems.742973.
JAMA Karaçaylı İ, Şimşek E. Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle. EMS. 2020;4:152–157.
MLA Karaçaylı, İbrahim and Erdoğan Şimşek. “Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle”. European Mechanical Science, vol. 4, no. 4, 2020, pp. 152-7, doi:10.26701/ems.742973.
Vancouver Karaçaylı İ, Şimşek E. Exergetic Investigation of the Effects of Superheating and Subcooling on Performance of a Vapor Compression Refrigeration Cycle. EMS. 2020;4(4):152-7.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter