Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 3, 179 - 188, 20.09.2022
https://doi.org/10.26701/ems.1056917

Abstract

References

  • [1] Barbir, F., Veziroǧlu, T.N., Plass, H.J., (1990). Environmental damage due to fossil fuels use. International Journal of Hydrogen Energy. doi: 10.1016/0360-3199(90)90005-J.
  • [2] Panwar, N.L., Kaushik, S.C., Kothari, S., (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2010.11.037.
  • [3] Yang, H., Lombardo, L., Luo, W., Kim, W., Züttel, A., (2018). Hydrogen storage properties of various carbon supported NaBH4 prepared via metathesis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.02.142.
  • [4] Nabid, M.R., Bide, Y., Kamali, B., (2019). Hydrogen release from sodium borohydride by Fe2O3@nitrogen-doped carbon core-shell nanosheets as reasonable heterogeneous catalyst. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.08.038.
  • [5] Balbay, A., Selvi̇tepe, N., Saka, C., (2021). Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.09.181.
  • [6] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
  • [7] Lee, J., Shin, H., Choi, K.S., Lee, J., Choi, J.Y., Yu, H.K., (2019). Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.11.218.
  • [8] Baydaroglu, F., Özdemir, E., Hasimoglu, A., (2014). An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2013.04.111.
  • [9] Wei, Y., Wang, Y., Wei, L., Zhao, X., Zhou, X., Liu, H., (2018). Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution. International Journal of Hydrogen Energy. 43(2): 592–600. doi: 10.1016/j.ijhydene.2017.11.010.
  • [10] Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., et al., (2019). Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy. 44(53): 28463–70. doi: 10.1016/j.ijhydene.2019.02.013.
  • [11] Yang, C.C., Chen, M.S., Chen, Y.W., (2011). Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO 2 catalyst. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2010.11.006.
  • [12] Lu, Y.C., Chen, M.S., Chen, Y.W., (2012). Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO 2. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2011.11.105.
  • [13] Zhang, X., Li, C., Qu, J., Guo, Q., Huang, K., (2019). Cotton stalk activated carbon-supported Co–Ce–B nanoparticles as efficient catalysts for hydrogen generation through hydrolysis of sodium borohydride. Carbon Resources Conversion. doi: 10.1016/j.crcon.2019.11.001.
  • [14] Selvitepe, N., Balbay, A., Saka, C., (2019). Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.04.254.
  • [15] Tian, H., Guo, Q., Xu, D., (2010). Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal of Power Sources. doi: 10.1016/j.jpowsour.2009.10.006.
  • [16] Saka, C., Salih Eygi, M., Balbay, A., (2020). CoB doped acid modified zeolite catalyst for enhanced hydrogen release from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.238.
  • [17] Joydev, M., Binayak, R., Pratibha, S., (2014). Zeolite supported cobalt catalysts for sodium borohydride hydrolysis. Applied Mechanics and Materials,.
  • [18] Balkanli, E., Figen, H.E., (2019). Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.010.
  • [19] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
  • [20] Dupiano, P., Stamatis, D., Dreizin, E.L., (2011). Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2011.01.062.
  • [21] Li, F., Zhu, B., Sun, Y., Tao, W., (2017). Hydrogen generation by means of the combustion of aluminum powder/sodium borohydride in steam. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2016.07.015.
  • [22] Yazici, H., Yardimci, M.Y., Yiǧiter, H., Aydin, S., Türkel, S., (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites. doi: 10.1016/j.cemconcomp.2010.07.005.

Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction

Year 2022, Volume: 6 Issue: 3, 179 - 188, 20.09.2022
https://doi.org/10.26701/ems.1056917

Abstract

In this study, hydrolysis reaction performances of raw BFS powder and metal powders (which are ingredients of BFS) that are using as a catalyst are compared. Hydrogen generation by hydrolysis reaction of the Al and Fe2O3 Nano & Granule powders with sodium borohydride (NaBH4) addition in water was studied by using different catalysts amount at reaction vessels. The measured values of reaction temperatures and hydrogen flow rates were measured by using high-precision equipment. As a result of the obtained data, it was determined that Fe2O3 and Al catalysts have advantages over hydrogen production rate and fuel conversion, also, these experiments show a very high success in different parameters, and create promising effects in the reactions. Among the Al catalyst samples, the highest efficiency performances are achieved with Al Nano catalyst samples at 85.31 °C preheat with an instantaneous hydrogen generation rate of approximately 11.226 L / min for 33 minutes. Among the Fe2O3 catalyst samples, the highest efficiency performances are achieved with Fe2O3 Nano catalyst samples at 50 °C preheat with an instantaneous hydrogen generation rate of approximately 29.91 L / min for 12 minutes.

References

  • [1] Barbir, F., Veziroǧlu, T.N., Plass, H.J., (1990). Environmental damage due to fossil fuels use. International Journal of Hydrogen Energy. doi: 10.1016/0360-3199(90)90005-J.
  • [2] Panwar, N.L., Kaushik, S.C., Kothari, S., (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2010.11.037.
  • [3] Yang, H., Lombardo, L., Luo, W., Kim, W., Züttel, A., (2018). Hydrogen storage properties of various carbon supported NaBH4 prepared via metathesis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.02.142.
  • [4] Nabid, M.R., Bide, Y., Kamali, B., (2019). Hydrogen release from sodium borohydride by Fe2O3@nitrogen-doped carbon core-shell nanosheets as reasonable heterogeneous catalyst. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.08.038.
  • [5] Balbay, A., Selvi̇tepe, N., Saka, C., (2021). Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.09.181.
  • [6] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
  • [7] Lee, J., Shin, H., Choi, K.S., Lee, J., Choi, J.Y., Yu, H.K., (2019). Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.11.218.
  • [8] Baydaroglu, F., Özdemir, E., Hasimoglu, A., (2014). An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2013.04.111.
  • [9] Wei, Y., Wang, Y., Wei, L., Zhao, X., Zhou, X., Liu, H., (2018). Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution. International Journal of Hydrogen Energy. 43(2): 592–600. doi: 10.1016/j.ijhydene.2017.11.010.
  • [10] Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., et al., (2019). Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy. 44(53): 28463–70. doi: 10.1016/j.ijhydene.2019.02.013.
  • [11] Yang, C.C., Chen, M.S., Chen, Y.W., (2011). Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO 2 catalyst. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2010.11.006.
  • [12] Lu, Y.C., Chen, M.S., Chen, Y.W., (2012). Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO 2. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2011.11.105.
  • [13] Zhang, X., Li, C., Qu, J., Guo, Q., Huang, K., (2019). Cotton stalk activated carbon-supported Co–Ce–B nanoparticles as efficient catalysts for hydrogen generation through hydrolysis of sodium borohydride. Carbon Resources Conversion. doi: 10.1016/j.crcon.2019.11.001.
  • [14] Selvitepe, N., Balbay, A., Saka, C., (2019). Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.04.254.
  • [15] Tian, H., Guo, Q., Xu, D., (2010). Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal of Power Sources. doi: 10.1016/j.jpowsour.2009.10.006.
  • [16] Saka, C., Salih Eygi, M., Balbay, A., (2020). CoB doped acid modified zeolite catalyst for enhanced hydrogen release from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.238.
  • [17] Joydev, M., Binayak, R., Pratibha, S., (2014). Zeolite supported cobalt catalysts for sodium borohydride hydrolysis. Applied Mechanics and Materials,.
  • [18] Balkanli, E., Figen, H.E., (2019). Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.010.
  • [19] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
  • [20] Dupiano, P., Stamatis, D., Dreizin, E.L., (2011). Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2011.01.062.
  • [21] Li, F., Zhu, B., Sun, Y., Tao, W., (2017). Hydrogen generation by means of the combustion of aluminum powder/sodium borohydride in steam. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2016.07.015.
  • [22] Yazici, H., Yardimci, M.Y., Yiǧiter, H., Aydin, S., Türkel, S., (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites. doi: 10.1016/j.cemconcomp.2010.07.005.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Feride Cansu İskenderoğlu This is me 0000-0003-4083-677X

Kaan Baltacıoğlu 0000-0002-4082-902X

Publication Date September 20, 2022
Acceptance Date May 27, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA İskenderoğlu, F. C., & Baltacıoğlu, K. (2022). Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. European Mechanical Science, 6(3), 179-188. https://doi.org/10.26701/ems.1056917
AMA İskenderoğlu FC, Baltacıoğlu K. Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. EMS. September 2022;6(3):179-188. doi:10.26701/ems.1056917
Chicago İskenderoğlu, Feride Cansu, and Kaan Baltacıoğlu. “Comparison of Pure-Hydrogen Production Performances of Blast Furnace Slag, and Metal Powders in Sodium Borohydride Hydrolysis Reaction”. European Mechanical Science 6, no. 3 (September 2022): 179-88. https://doi.org/10.26701/ems.1056917.
EndNote İskenderoğlu FC, Baltacıoğlu K (September 1, 2022) Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. European Mechanical Science 6 3 179–188.
IEEE F. C. İskenderoğlu and K. Baltacıoğlu, “Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction”, EMS, vol. 6, no. 3, pp. 179–188, 2022, doi: 10.26701/ems.1056917.
ISNAD İskenderoğlu, Feride Cansu - Baltacıoğlu, Kaan. “Comparison of Pure-Hydrogen Production Performances of Blast Furnace Slag, and Metal Powders in Sodium Borohydride Hydrolysis Reaction”. European Mechanical Science 6/3 (September 2022), 179-188. https://doi.org/10.26701/ems.1056917.
JAMA İskenderoğlu FC, Baltacıoğlu K. Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. EMS. 2022;6:179–188.
MLA İskenderoğlu, Feride Cansu and Kaan Baltacıoğlu. “Comparison of Pure-Hydrogen Production Performances of Blast Furnace Slag, and Metal Powders in Sodium Borohydride Hydrolysis Reaction”. European Mechanical Science, vol. 6, no. 3, 2022, pp. 179-88, doi:10.26701/ems.1056917.
Vancouver İskenderoğlu FC, Baltacıoğlu K. Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. EMS. 2022;6(3):179-88.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter