Research Article
BibTex RIS Cite

Investigation of monolayer anodized TiO2 film and bilayer spin coated graphene film on corrosion and tribocorrosion properties of Ti45Nb alloy

Year 2024, Volume: 8 Issue: 3, 191 - 198, 20.09.2024
https://doi.org/10.26701/ems.1485412

Abstract

This study investigates the structural, corrosion, and tribocorrosion properties of Ti45Nb alloy coated with monolayer and bilayer films. Ti45Nb samples were ultrasonically degreased, anodized in a H2SO4 and H3PO4 solution, and coated with graphene oxide (GO) films via spin coating and subsequent annealing. The anodized samples exhibited anatase and rutile phases, while GO films displayed characteristic Raman shifts indicating graphite oxidation. Corrosion tests in simulated body fluid (SBF) revealed enhanced corrosion resistance in bilayer samples, evidenced by a lower corrosion current density (2.28×10-6 A/cm2) and a higher corrosion potential (10 mV) compared to monolayer and untreated samples. Electrochemical impedance spectroscopy (EIS) indicated superior charge transfer resistance (9.72 Ωcm2) for bilayer coatings. Tribocorrosion tests demonstrated reduced wear rates and coefficient of friction (COF) in bilayer films, attributed to increased surface hardness and load-carrying capacity. The findings suggest that the bilayer coating significantly enhances the corrosion and tribocorrosion resistance of Ti45Nb, making it a promising material for biomedical applications.

References

  • Boyer, R. R. (1996). An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 213, 103–114.
  • Acar, M. T. (2023). Investigation of surface wettability, corrosion and tribocorrosion behavior of machined, etched, blasted and anodized Cp-Ti samples. MRS Communications, 13, 587–593. https://doi.org/10.1557/s43579-023-00387-6
  • Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in Materials Science, 54, 397–425.
  • Hoque, M. A., Yao, C.-W., Lian, I., Zhou, J., Jao, M., & Huang, Y.-C. (2022). Enhancement of corrosion resistance of a hot-dip galvanized steel by superhydrophobic top coating. MRS Communications, 12, 415–421.
  • Guo, C., Kang, T., Wu, S., Ying, M., Liu, W. M., & Chen, F. (2021). Microstructure, mechanical, and corrosion resistance of copper nickel alloy fabricated by wire-arc additive manufacturing. MRS Communications, 11, 910–916.
  • Bandyopadhyay, A., Bose, S., & Narayan, R. (2022). Translation of 3D printed materials for medical applications. MRS Bulletin, 47, 39–48.
  • Rathnakumar, S., Bhaskar, S., Badiya, P. K., Sivaramakrishnan, V., Srinivasan, V., & Ramamurthy, S. S. (2023). Electrospun PVA nanofibers doped with titania nanoparticles in plasmon-coupled fluorescence studies: An eco-friendly and cost-effective transition from 2D nano thin films to 1D nanofibers. MRS Communications, 13, 290–298.
  • Comakli, O. (2020). Influence of CrN, TiAlN monolayers and TiAlN/CrN multilayer ceramic films on structural, mechanical and tribological behavior of β-type Ti45Nb alloys. Ceramics International, 46, 8185–8191.
  • Çomaklı, O. (2021). Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceramics International, 47, 4149–4156.
  • Laketić, S., Rakin, M., Momčilović, M., Ciganović, J., Veljović, D., & Cvijović-Alagić, I. (2021). Influence of laser irradiation parameters on the ultrafine-grained Ti45Nb alloy surface characteristics. Surface and Coatings Technology, 418, 127255.
  • Çomaklı, O., Yazıcı, M., Demir, M., Yetim, A. F., & Çelik, A. (2023). Effect of bilayer numbers on structural, mechanical, tribological and corrosion properties of TiO2–SiO2 multilayer film-coated β-type Ti45Nb alloys. Ceramics International, 49, 3007–3015.
  • Zorn, G., Lesman, A., & Gotman, I. (2006). Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation. Surface and Coatings Technology, 201, 612–618.
  • Yin, J., Chu, Y., & Tan, L. (2023). Cu/N co-doped TiO2 nanopowder with high antibacterial activity under visible light. MRS Communications. https://doi.org/10.1557/s43579-023-00377-8
  • Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Applied Surface Science, 252, 1107–1116.
  • Kulkarni, M., Mazare, A., Schmuki, P., Iglič, A., & Seifalian, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111, 111.
  • PalDey, S., & Deevi, S. C. (2003). Single layer and multilayer wear resistant coatings of (Ti, Al) N: A review. Materials Science and Engineering: A, 342, 58–79.
  • Ding, Z., Zhou, Q., Wang, Y., Ding, Z., Tang, Y., & He, Q. (2021). Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 47, 1133–1144.
  • Wei, Y., & Gong, C. (2011). Effects of pulsed bias duty ratio on microstructure and mechanical properties of TiN/TiAlN multilayer coatings. Applied Surface Science, 257, 7881–7886.
  • Chen, W., Yang, Y., Zhao, Q., Liu, X., & Fu, Y.-Q. (2022). Nanoscale mechanics of metal-coated graphene nanocomposite powders. Materials Today Communications, 33, 104731.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Comparison of the structural properties, surface wettability and corrosion resistance of TiO2 nanotubes fabricated on Cp-Ti, Ti6Al4V and Ti45Nb. Materials Today Communications, 33, 104396.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite. Materials Today Communications, 31, 103683. https://doi.org/10.1016/j.mtcomm.2022.103683
  • Acar, M. T. (2024). Analyzing the corrosion and tribocorrosion performances of monolayer TiO2 and bilayer TiO2-SiO2 coatings at different SBF temperatures. Physica Scripta, 99, 025910.
  • Umar, M. I. A., Yap, C. C., Awang, R., Salleh, M. M., & Yahaya, M. (2014). The effect of spin-coated polyethylene glycol on the electrical and optical properties of graphene film. Applied Surface Science, 313, 883–887.
  • Salasi, M., Stachowiak, G. B., & Stachowiak, G. W. (2011). Three-body tribocorrosion of high-chromium cast irons in neutral and alkaline environments. Wear, 271, 1385–1396. https://doi.org/10.1016/j.wear.2011.01.066
  • Wang, Y., Wang, S., Wu, Y., Wang, Z., Zhang, H., Cao, Z., He, J., Li, W., Yang, Z., & Zheng, L. (2021). A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 851, 156733.
  • Oktay, A., Yilmazer, H., Przekora, A., Yilmazer, Y., Wojcik, M., Dikici, B., & Ustundag, C. B. (2023). Corrosion response and biocompatibility of graphene oxide (GO) serotonin (Ser) coatings on Ti6Al7Nb and Ti29Nb13Ta4.6Zr (TNTZ) alloys fabricated by electrophoretic deposition (EPD). Materials Today Communications, 34, 105236.
  • Li, X., Li, C., Gong, T., Su, J., Zhang, W., Song, Y., & Zhu, X. (2021). Comparative study on the anodizing process of Ti and Zr and oxide morphology. Ceramics International, 47, 23332–23337.
  • Mansfeld, F., Liu, G., Xiao, H., Tsai, C. H., & Little, B. J. (1994). The corrosion behavior of copper alloys, stainless steels and titanium in seawater. Corrosion Science, 36, 2063–2095.
  • Marcus, P., Maurice, V., & Strehblow, H.-H. (2008). Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science, 50, 2698–2704.
  • Dehri, I., & Erbil, M. (2000). The effect of relative humidity on the atmospheric corrosion of defective organic coating materials: An EIS study with a new approach. Corrosion Science, 42, 969–978.
  • Volovitch, P., Vu, T. N., Allély, C., Aal, A. A., & Ogle, K. (2011). Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel. Corrosion Science, 53, 2437–2445.
  • Khan, M. A., Williams, R. L., & Williams, D. F. (1999). Conjoint corrosion and wear in titanium alloys. Biomaterials, 20, 765–772.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Investigation of corrosion and tribocorrosion behavior of boron doped and graphene oxide doped TiO2 nanotubes produced on Cp-Ti. Materials Today Communications, 32, 104182.
  • Çomaklı, O. (2021). Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceramics International, 47, 4149–4156.
Year 2024, Volume: 8 Issue: 3, 191 - 198, 20.09.2024
https://doi.org/10.26701/ems.1485412

Abstract

References

  • Boyer, R. R. (1996). An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 213, 103–114.
  • Acar, M. T. (2023). Investigation of surface wettability, corrosion and tribocorrosion behavior of machined, etched, blasted and anodized Cp-Ti samples. MRS Communications, 13, 587–593. https://doi.org/10.1557/s43579-023-00387-6
  • Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in Materials Science, 54, 397–425.
  • Hoque, M. A., Yao, C.-W., Lian, I., Zhou, J., Jao, M., & Huang, Y.-C. (2022). Enhancement of corrosion resistance of a hot-dip galvanized steel by superhydrophobic top coating. MRS Communications, 12, 415–421.
  • Guo, C., Kang, T., Wu, S., Ying, M., Liu, W. M., & Chen, F. (2021). Microstructure, mechanical, and corrosion resistance of copper nickel alloy fabricated by wire-arc additive manufacturing. MRS Communications, 11, 910–916.
  • Bandyopadhyay, A., Bose, S., & Narayan, R. (2022). Translation of 3D printed materials for medical applications. MRS Bulletin, 47, 39–48.
  • Rathnakumar, S., Bhaskar, S., Badiya, P. K., Sivaramakrishnan, V., Srinivasan, V., & Ramamurthy, S. S. (2023). Electrospun PVA nanofibers doped with titania nanoparticles in plasmon-coupled fluorescence studies: An eco-friendly and cost-effective transition from 2D nano thin films to 1D nanofibers. MRS Communications, 13, 290–298.
  • Comakli, O. (2020). Influence of CrN, TiAlN monolayers and TiAlN/CrN multilayer ceramic films on structural, mechanical and tribological behavior of β-type Ti45Nb alloys. Ceramics International, 46, 8185–8191.
  • Çomaklı, O. (2021). Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceramics International, 47, 4149–4156.
  • Laketić, S., Rakin, M., Momčilović, M., Ciganović, J., Veljović, D., & Cvijović-Alagić, I. (2021). Influence of laser irradiation parameters on the ultrafine-grained Ti45Nb alloy surface characteristics. Surface and Coatings Technology, 418, 127255.
  • Çomaklı, O., Yazıcı, M., Demir, M., Yetim, A. F., & Çelik, A. (2023). Effect of bilayer numbers on structural, mechanical, tribological and corrosion properties of TiO2–SiO2 multilayer film-coated β-type Ti45Nb alloys. Ceramics International, 49, 3007–3015.
  • Zorn, G., Lesman, A., & Gotman, I. (2006). Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation. Surface and Coatings Technology, 201, 612–618.
  • Yin, J., Chu, Y., & Tan, L. (2023). Cu/N co-doped TiO2 nanopowder with high antibacterial activity under visible light. MRS Communications. https://doi.org/10.1557/s43579-023-00377-8
  • Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Applied Surface Science, 252, 1107–1116.
  • Kulkarni, M., Mazare, A., Schmuki, P., Iglič, A., & Seifalian, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111, 111.
  • PalDey, S., & Deevi, S. C. (2003). Single layer and multilayer wear resistant coatings of (Ti, Al) N: A review. Materials Science and Engineering: A, 342, 58–79.
  • Ding, Z., Zhou, Q., Wang, Y., Ding, Z., Tang, Y., & He, Q. (2021). Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 47, 1133–1144.
  • Wei, Y., & Gong, C. (2011). Effects of pulsed bias duty ratio on microstructure and mechanical properties of TiN/TiAlN multilayer coatings. Applied Surface Science, 257, 7881–7886.
  • Chen, W., Yang, Y., Zhao, Q., Liu, X., & Fu, Y.-Q. (2022). Nanoscale mechanics of metal-coated graphene nanocomposite powders. Materials Today Communications, 33, 104731.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Comparison of the structural properties, surface wettability and corrosion resistance of TiO2 nanotubes fabricated on Cp-Ti, Ti6Al4V and Ti45Nb. Materials Today Communications, 33, 104396.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite. Materials Today Communications, 31, 103683. https://doi.org/10.1016/j.mtcomm.2022.103683
  • Acar, M. T. (2024). Analyzing the corrosion and tribocorrosion performances of monolayer TiO2 and bilayer TiO2-SiO2 coatings at different SBF temperatures. Physica Scripta, 99, 025910.
  • Umar, M. I. A., Yap, C. C., Awang, R., Salleh, M. M., & Yahaya, M. (2014). The effect of spin-coated polyethylene glycol on the electrical and optical properties of graphene film. Applied Surface Science, 313, 883–887.
  • Salasi, M., Stachowiak, G. B., & Stachowiak, G. W. (2011). Three-body tribocorrosion of high-chromium cast irons in neutral and alkaline environments. Wear, 271, 1385–1396. https://doi.org/10.1016/j.wear.2011.01.066
  • Wang, Y., Wang, S., Wu, Y., Wang, Z., Zhang, H., Cao, Z., He, J., Li, W., Yang, Z., & Zheng, L. (2021). A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 851, 156733.
  • Oktay, A., Yilmazer, H., Przekora, A., Yilmazer, Y., Wojcik, M., Dikici, B., & Ustundag, C. B. (2023). Corrosion response and biocompatibility of graphene oxide (GO) serotonin (Ser) coatings on Ti6Al7Nb and Ti29Nb13Ta4.6Zr (TNTZ) alloys fabricated by electrophoretic deposition (EPD). Materials Today Communications, 34, 105236.
  • Li, X., Li, C., Gong, T., Su, J., Zhang, W., Song, Y., & Zhu, X. (2021). Comparative study on the anodizing process of Ti and Zr and oxide morphology. Ceramics International, 47, 23332–23337.
  • Mansfeld, F., Liu, G., Xiao, H., Tsai, C. H., & Little, B. J. (1994). The corrosion behavior of copper alloys, stainless steels and titanium in seawater. Corrosion Science, 36, 2063–2095.
  • Marcus, P., Maurice, V., & Strehblow, H.-H. (2008). Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science, 50, 2698–2704.
  • Dehri, I., & Erbil, M. (2000). The effect of relative humidity on the atmospheric corrosion of defective organic coating materials: An EIS study with a new approach. Corrosion Science, 42, 969–978.
  • Volovitch, P., Vu, T. N., Allély, C., Aal, A. A., & Ogle, K. (2011). Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel. Corrosion Science, 53, 2437–2445.
  • Khan, M. A., Williams, R. L., & Williams, D. F. (1999). Conjoint corrosion and wear in titanium alloys. Biomaterials, 20, 765–772.
  • Acar, M. T., Kovacı, H., & Çelik, A. (2022). Investigation of corrosion and tribocorrosion behavior of boron doped and graphene oxide doped TiO2 nanotubes produced on Cp-Ti. Materials Today Communications, 32, 104182.
  • Çomaklı, O. (2021). Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceramics International, 47, 4149–4156.
There are 34 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering
Journal Section Research Article
Authors

Muhammet Taha Acar 0000-0002-8367-9623

Early Pub Date August 10, 2024
Publication Date September 20, 2024
Submission Date May 16, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Acar, M. T. (2024). Investigation of monolayer anodized TiO2 film and bilayer spin coated graphene film on corrosion and tribocorrosion properties of Ti45Nb alloy. European Mechanical Science, 8(3), 191-198. https://doi.org/10.26701/ems.1485412

Dergi TR Dizin'de Taranmaktadır.

Flag Counter