Research Article
BibTex RIS Cite

Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods

Year 2020, Volume: 44 Issue: 1, 111 - 121, 01.03.2020
https://doi.org/10.16970/entoted.619263

Abstract

Honeybees are exposed to insecticides by direct contact with spray droplets or residues on plant, or through ingestion of contaminated pollen or nectar. Direct contact with foliar spray might be the most common exposure route and contact bioassays are preferred as they better simulate field situation. Bioassays were conducted during 2018 at Sultan Qaboos University, Oman. The acute contact and oral toxicity of commercial formulations of deltamethrin 2.5 EC, thiamethoxam 25 WG and acetamiprid 20 SL to Apis mellifera subsp. lamarckii Cockerell 1906 (Hymenoptera: Apidae) foragers were measured by three exposure methods (contact by a 1-µL droplet on thorax, contact by Potter spray tower and oral ingestion). Potter tower exposure gave significantly higher mortality at lower concentration of deltamethrin than contact exposure by single droplet on thorax. Thiamethoxam showed significantly higher mortality through oral exposure at all concentrations. HQoral values were also calculated. Acetamiprid did not give more than 50% mortality even with the highest concentration. Potter tower produced fine droplets (0.286±0.071 µm) and a total of 0.829 µL was deposited on a single honeybee. Forager honeybees are more likely be exposed to the very fine droplets in field and toxicological results obtained by Potter tower or similar devices will be more realistic than a single droplet on thorax.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Carvalho, S. M., L. P. Belzunces, G. A. Carvalho, J. L. Brunet & A. B. Beneteau, 2013. Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental Toxicology and Chemistry, 32 (9): 2117-2124.
  • Chauzat, M. P., A. C. Martel, N. Cougoule, P. Porta, J. Lachaize, S. Zeggane, M. Aubert, P. Carpentier & J. P. Faucon, 2011. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presences in continental France. Environmental Toxicology Chemistry, 30: 103-111.
  • Cunha, J. P. A. R., A. C. Farnese & J. J. Olivet, 2013. Computer programs for analysis of droplets sprayed on water sensitive papers. Planta Daninha, 31 (3): 715-720.
  • Decourtye, A. & J. Devillers, 2010. “Ecotoxicity of Neonicotinoid Insecticides to Bees, 85-95”. In: Insect Nicotinic Acetylcholine Receptors (Ed. S. H. Thany). Springer Science + Business Media, LLC, New York, USA, 115 pp.
  • EFSA (European Food Safety Authority), 2013. EFSA guidance document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal, 11 (7): 268.
  • Free, J. B., 1993. Insect Pollination of Crops. 2nd Ed. Academic, London, UK, 684pp.
  • Gallai, N., J. M. Salles, J. Settele & B. E. Vaissière, 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68: 810-821.
  • Hanna, M., J. Kruckeberg, M. Darr & B. Steward, 2009. “Nozzle and droplet size effects on pesticide performance and drift, 49-52.” Proceedings of the 21s Annual Integrated Crop Management Conference (1 December 2009, Iowa State University), 158 pp.
  • Hewitt, A. J., D. L. Valcore & M. E. Teske, 1997. Drop size classifications for agricultural sprays. Spraying Systems Co., North Avenue at Schmale Rd., Wheaton, IL 60187 USA. (Web page: www.spray.com/) (Date accessed: April 2019).
  • Himel, C. M., 1969. The optimum size for insecticide spray droplets. Journal of Economic Entomology, 62 (4): 919-925.
  • Iwasa, T., N. Motoyama, J. T. Ambrose & R. M. Roe, 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23: 371-378.
  • Laurino, D., M. Porporato, A. Patetta & A. Manino, 2011. Toxicity of neonicotinoid insecticides to honey bees: laboratory tests. Bulletin of Insectology, 64 (1): 107-113.
  • Mayer, D. F., 1999. Arthropod management tests-bee poisoning toxicity, 1995-1998. (Web page: http://www.academic.oup.com) (Date accessed: June 2019).
  • Meled, M., A. Thrasyvoulou & L. P. Belzunces, 1998. Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environmental Toxicology and Chemistry, 17 (12): 2517-2520.
  • Muccinelli, M., 2008. Prontuario degli agrofarmaci. Edagricole, New Business Media, Bologna, Italy, 1024 pp.
  • OEPP/EPPO, 2010. Environmental risk assessment scheme for plant protection products. PP 3/10 Chapter 10: Honeybees. Bulletin OEPP/EPPO Bulletin, 40 (3): 323-331
  • PPDB, 2019. Pesticide Properties Data Base, General information for acetamiprid. (Web page: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/11.htm) (Date accessed: November 2019).
  • Sanchez-Bayo, F. & K. Goka, 2014. Pesticide residues and bees - a risk assessment. PLoS ONE, 9 (4): e94482.
  • Sarto, M., E. Oliveira, R. Guedes & L. Campos, 2014. Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie, 45 (5): 626-636.
  • Scott-Dupree, C., M. Spivak, G. Bruns, C. Blenkinsop & S. Nelson, 2001. The impact of Gaucho and TI-435 seed-treated canola on honey bees, Apis mellifera L. Bayer Corporation Report No. 110403, EPA MRID No. 45422435.
  • Senn, R., D. Hofer, T. Hoppe, M. Angst, P. Wyss, F. Brandl & P. Maienfisch, 1998. CGA 293’343: a novel broad-spectrum insecticide supporting sustainable agriculture worldwide. Brighton Crop Protection Conference: Pests and Diseases, 1: 27-36.
  • Soderlund, D. M. & J. R. Bloomquist, 1989. Neurotoxic action of pyrethroid insecticides. Annual Review of Entomology, 34: 77-96.
  • Stoner, K. A. & B. D. Eitzer, 2013. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One, 8 (10): e77550.
  • Tomizawa, M. & J. E. Casida, 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45: 247-268.
  • Tomlin, C., 2003. “The Pesticide Manual, 986-987”. British Crop Protection Council, 13th edition, Alton, Hampshire, UK, 1344 pp.

Toplayıcı bal arılarının (Apis mellifera L., 1758) (Hymenoptera: Apidae) farklı maruz kalma yöntemleri ile iki neonikotinoid ve bir piretroidin karşılaştırmalı toksisitesi

Year 2020, Volume: 44 Issue: 1, 111 - 121, 01.03.2020
https://doi.org/10.16970/entoted.619263

Abstract

Bal arıları sprey damlamaları veya bitkilerdeki kalıntılarından doğrudan temas ile, ya da bulaşık polen veya nektar alımı ile insektisitlere maruz kalmaktadır. İlaçlama ile doğrudan teması en yaygın maruz kalma şeklidir ve arazideki durumu daha iyi simüle ettiği için temas biyolojik denemeleri tercih edilmektedir. Biyolojik denemeler, 2018 yılında Umman Sultan Qaboos Üniversitesi'nde yürütülmüştür. deltamethrin 2.5 EC, thiamethoxam 25 WG ve acetamiprid 20 SL’nin ticari formülasyonlarının Apis mellifera subsp. lamarckii Cockerell 1906 (Hymenoptera: Apidae) toplayıcılara akut teması ve ağızdan zehirlenmesi üç yöntem (thoraks üzerinde 1-µL damlacık ile temas, Potter sprey kulesi ile temas ve oral alınım) ile ölçülmüştür. Potter kule uygulaması, daha düşük deltametrin konsantrasyonunda, thoraks üzerindeki tek damlacık ile temasta etkilenmeye göre önemli ölçüde daha yüksek ölüm oranı sağlamıştır. Thiamethoxam, tüm konsantrasyonlarda oral yoldan maruz kalma ile önemli ölçüde daha yüksek ölüm oranı göstermiştir. HQoral değerleri de hesaplanmıştır. Acetamiprid, en yüksek konsantrasyonda bile %50'den fazla ölüm oranı vermemiştir. Potter kulesi, ince damlacıklar (0.286 ± 0.071 µm) üretmiştir ve tek bir bal arısı üzerinde toplam 0.829 µL biriktirilmiştir. Toplayıcı bal arıları, tarladaki çok ince damlacıklara maruz kalmaya daha yatkındır ve Potter kulesi veya benzer cihazları kullanarak elde edilen toksikolojik sonuçlar, thorakstaki tek bir damlacığa göre daha gerçekçi olacaktır.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Carvalho, S. M., L. P. Belzunces, G. A. Carvalho, J. L. Brunet & A. B. Beneteau, 2013. Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental Toxicology and Chemistry, 32 (9): 2117-2124.
  • Chauzat, M. P., A. C. Martel, N. Cougoule, P. Porta, J. Lachaize, S. Zeggane, M. Aubert, P. Carpentier & J. P. Faucon, 2011. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presences in continental France. Environmental Toxicology Chemistry, 30: 103-111.
  • Cunha, J. P. A. R., A. C. Farnese & J. J. Olivet, 2013. Computer programs for analysis of droplets sprayed on water sensitive papers. Planta Daninha, 31 (3): 715-720.
  • Decourtye, A. & J. Devillers, 2010. “Ecotoxicity of Neonicotinoid Insecticides to Bees, 85-95”. In: Insect Nicotinic Acetylcholine Receptors (Ed. S. H. Thany). Springer Science + Business Media, LLC, New York, USA, 115 pp.
  • EFSA (European Food Safety Authority), 2013. EFSA guidance document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal, 11 (7): 268.
  • Free, J. B., 1993. Insect Pollination of Crops. 2nd Ed. Academic, London, UK, 684pp.
  • Gallai, N., J. M. Salles, J. Settele & B. E. Vaissière, 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68: 810-821.
  • Hanna, M., J. Kruckeberg, M. Darr & B. Steward, 2009. “Nozzle and droplet size effects on pesticide performance and drift, 49-52.” Proceedings of the 21s Annual Integrated Crop Management Conference (1 December 2009, Iowa State University), 158 pp.
  • Hewitt, A. J., D. L. Valcore & M. E. Teske, 1997. Drop size classifications for agricultural sprays. Spraying Systems Co., North Avenue at Schmale Rd., Wheaton, IL 60187 USA. (Web page: www.spray.com/) (Date accessed: April 2019).
  • Himel, C. M., 1969. The optimum size for insecticide spray droplets. Journal of Economic Entomology, 62 (4): 919-925.
  • Iwasa, T., N. Motoyama, J. T. Ambrose & R. M. Roe, 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23: 371-378.
  • Laurino, D., M. Porporato, A. Patetta & A. Manino, 2011. Toxicity of neonicotinoid insecticides to honey bees: laboratory tests. Bulletin of Insectology, 64 (1): 107-113.
  • Mayer, D. F., 1999. Arthropod management tests-bee poisoning toxicity, 1995-1998. (Web page: http://www.academic.oup.com) (Date accessed: June 2019).
  • Meled, M., A. Thrasyvoulou & L. P. Belzunces, 1998. Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environmental Toxicology and Chemistry, 17 (12): 2517-2520.
  • Muccinelli, M., 2008. Prontuario degli agrofarmaci. Edagricole, New Business Media, Bologna, Italy, 1024 pp.
  • OEPP/EPPO, 2010. Environmental risk assessment scheme for plant protection products. PP 3/10 Chapter 10: Honeybees. Bulletin OEPP/EPPO Bulletin, 40 (3): 323-331
  • PPDB, 2019. Pesticide Properties Data Base, General information for acetamiprid. (Web page: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/11.htm) (Date accessed: November 2019).
  • Sanchez-Bayo, F. & K. Goka, 2014. Pesticide residues and bees - a risk assessment. PLoS ONE, 9 (4): e94482.
  • Sarto, M., E. Oliveira, R. Guedes & L. Campos, 2014. Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie, 45 (5): 626-636.
  • Scott-Dupree, C., M. Spivak, G. Bruns, C. Blenkinsop & S. Nelson, 2001. The impact of Gaucho and TI-435 seed-treated canola on honey bees, Apis mellifera L. Bayer Corporation Report No. 110403, EPA MRID No. 45422435.
  • Senn, R., D. Hofer, T. Hoppe, M. Angst, P. Wyss, F. Brandl & P. Maienfisch, 1998. CGA 293’343: a novel broad-spectrum insecticide supporting sustainable agriculture worldwide. Brighton Crop Protection Conference: Pests and Diseases, 1: 27-36.
  • Soderlund, D. M. & J. R. Bloomquist, 1989. Neurotoxic action of pyrethroid insecticides. Annual Review of Entomology, 34: 77-96.
  • Stoner, K. A. & B. D. Eitzer, 2013. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One, 8 (10): e77550.
  • Tomizawa, M. & J. E. Casida, 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45: 247-268.
  • Tomlin, C., 2003. “The Pesticide Manual, 986-987”. British Crop Protection Council, 13th edition, Alton, Hampshire, UK, 1344 pp.
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Riaz Shah 0000-0001-5018-9663

Asma S. A. Al Maawalı This is me 0000-0003-1561-9749

Ali Al Raeesı This is me 0000-0001-5695-8160

Publication Date March 1, 2020
Submission Date September 12, 2019
Acceptance Date December 5, 2019
Published in Issue Year 2020 Volume: 44 Issue: 1

Cite

APA Shah, R., Al Maawalı, A. S. A., & Al Raeesı, A. (2020). Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods. Turkish Journal of Entomology, 44(1), 111-121. https://doi.org/10.16970/entoted.619263
AMA Shah R, Al Maawalı ASA, Al Raeesı A. Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods. TED. March 2020;44(1):111-121. doi:10.16970/entoted.619263
Chicago Shah, Riaz, Asma S. A. Al Maawalı, and Ali Al Raeesı. “Comparative Toxicity of Two Neonicotinoids and a Pyrethroid to Forager Honeybees (Apis Mellifera L., 1758) (Hymenoptera: Apidae) by Different Exposure Methods”. Turkish Journal of Entomology 44, no. 1 (March 2020): 111-21. https://doi.org/10.16970/entoted.619263.
EndNote Shah R, Al Maawalı ASA, Al Raeesı A (March 1, 2020) Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods. Turkish Journal of Entomology 44 1 111–121.
IEEE R. Shah, A. S. A. Al Maawalı, and A. Al Raeesı, “Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods”, TED, vol. 44, no. 1, pp. 111–121, 2020, doi: 10.16970/entoted.619263.
ISNAD Shah, Riaz et al. “Comparative Toxicity of Two Neonicotinoids and a Pyrethroid to Forager Honeybees (Apis Mellifera L., 1758) (Hymenoptera: Apidae) by Different Exposure Methods”. Turkish Journal of Entomology 44/1 (March 2020), 111-121. https://doi.org/10.16970/entoted.619263.
JAMA Shah R, Al Maawalı ASA, Al Raeesı A. Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods. TED. 2020;44:111–121.
MLA Shah, Riaz et al. “Comparative Toxicity of Two Neonicotinoids and a Pyrethroid to Forager Honeybees (Apis Mellifera L., 1758) (Hymenoptera: Apidae) by Different Exposure Methods”. Turkish Journal of Entomology, vol. 44, no. 1, 2020, pp. 111-2, doi:10.16970/entoted.619263.
Vancouver Shah R, Al Maawalı ASA, Al Raeesı A. Comparative toxicity of two neonicotinoids and a pyrethroid to forager honeybees (Apis mellifera L., 1758) (Hymenoptera: Apidae) by different exposure methods. TED. 2020;44(1):111-2.