Research Article
BibTex RIS Cite

Evaluation of the effects of thermal changes on the bond strength between zirconia framework and veneering ceramic during the firing process

Year 2023, Volume: 57 Issue: 2, 108 - 114, 31.05.2023
https://doi.org/10.26650/eor.2023978293

Abstract

Purpose

The aim of this in-vitro study was to evaluate the effect of thermal changes to shear bond strength during the firing process of veneering porcelain on a zirconia framework.

Materials and Methods

Single yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) framework ceramic (Kavo Dental GmbH) and three different types of veneering ceramics (IPS e.max Ceram, Vita VM9, and GC Initial Zr-FS) were used. One-hundred-twenty standard disc-shaped samples were prepared from zirconia blocks by using a CAD/CAM system (Kavo Everest). Four different cooling processes (maximum, 25°C/min, 50°C/min and 75°C/min) were applied to the veneering ceramics and the shear bond strength (SBS) test was performed. Ceramic surfaces were investigated by using scanning electron microscopeic (SEM). The possible occurrence of a t–m transformation of zirconia was evaluated by X-Ray Diffraction (XRD). Two-way analysis of variance, Bonferroni correction and paired comparisons were used for statistical analysis.

Results

The main effects of veneering ceramics on shear bond strength were found to be significant (p=0.042). The mean shear bond strength values differ according to the cooling process (p<0.001). The monoclinic phase ratio increased in groups with fast cooling process.

Conclusion

The thermal changes during the firing process of veneering porcelain on a zirconia framework influenced the shear bond strength of the all-ceramic bilayered system. A slow cooling process provided higher strength for bilayer ceramic samples.

Supporting Institution

Scientific Research Projects Coordination Unit of Istanbul University

Project Number

24120

Thanks

Thanks for supporting

References

  • Reference 1- Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005; 21: 984-91.
  • Reference 2- Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004; 91: 349-355.
  • Reference 3- Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar, leucite-, mica- and zirconia-based ceramics. J Dent 2000; 28: 529-35.
  • Reference 4- Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004; 20: 449-456.
  • Reference 5- Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008; 24: 289-298
  • Reference 6- Larsson C, Wennerberg A. The clinical success o fzirconia-based crowns: a systematic review. Int JProsthodont 2014;27:33-43
  • Reference 7- Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005; 32: 180-7.
  • Reference 8- Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009; 5: 1668-77.
  • Reference 9- Kim J, Dhital S, Zhivago P, Kaizer MR, Zhang Y. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns. J Mech BehavBiomed Mater 2018;82:202-9.
  • Reference 10- Taskonak B, Borges GA, Mecholsky Jr JJ, Anusavice KJ, Moore BK, Yan J. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic. Dent Mater 2008; 24: 1149-1155
  • Reference 11- Göstemeyer G, Jendras M, Dittmer MP, Bach F-W, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 2010; 6: 4532-4538.
  • Reference 12- Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972; 55: 303-5.
  • Reference 13- Toraya H, Yoshimura M, Sōmiya S. Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984; 67: 119-21.
  • Reference 14- Guess PC, Kuliš A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008; 24: 1556-1567.
  • Reference 15- Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010; 104: 247-257
  • Reference 16- Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of cooling rate on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dent Mater 2011; 27: 906-914.
  • Reference 17- Komine F, Saito A, Kobayashi K, Koizuka M, Koizumi H, Matsumura H. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material. J Oral Sci 2010; 52: 647-652.
  • Reference 18- Da Sılva Rodrıgues, Camila, et al. Do thermal treatments affect the mechanical behavior of porcelain-veneered zirconia? A systematic review and meta-analysis. Dent Mater 2019; 35.5; 807-817.
  • Reference 19- Choi JE, Waddell JN, Swain MV. Pressed ceramics onto zirconia. Part 2: Indentation fracture and influence of cooling rate on residual stresses. Dent Mater 2011; 27: 1111-1118.
  • Reference 20- Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J Prosthet Dent 2012; 107: 163-169.
  • Reference 21- Bertolotti R, Shelby J. Viscosity of dental porcelain as a function of temperature. J Dent Res 1979; 58: 2001-2004.
  • Reference 22- Scherer GW. Relaxation in glass and composites. New York: Wiley; 1986
  • Reference 23- Swain, M. V., Mercurio, V., Tibballs, J. E., & Tholey, M. Thermal induced deflection of a porcelain–zirconia bilayer: Influence of cooling rate. Dent Mater 2019;35(4); 574-584.
  • Reference 24- Zhang ZP, Zhou SW, Li Q, Li W, Swain M. Residual stresses in fabrication of core-veneered ceramic prostheses. Adv Mater Res 2010; 97: 2241-2244.
  • Reference 25- Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. Vol. 17; John wiley & sons; 1976. Reference 26- Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel? Nature 1975; 258: 703-704.
  • Reference 27- De Jager N, de Kler M, van der Zel JM. The influence of different core material on the FEA-determined stress distribution in dental crowns. Dent Mater 2006; 22: 234-242.
  • Reference 28- Øilo M, Gjerdet NR, Tvinnereim HM. The firing procedure influences properties of a zirconia core ceramic. Dent Mater 2008; 24: 471-475.
  • Reference 29- Asaoka K, Kuwayama N, Tesk JA. Influence of tempering method on residual stress in dental porcelain. J Dent Res 1992; 71: 1623-1627.
  • Reference 30- Vita VM9 working instructions. [web page on the Internet]. Erişim 04.06.2014, http://vident.com/wp-content/uploads/2011/09/VITA-VM9-Working-Instructions_1190EN_0911.pdf
  • Reference 31- DeHoff P, Anusavice K, Vontivillu S. Analysis of tempering stresses in metal-ceramic disks. J Dent Res 1996; 75: 743-751.
  • Reference 32- Tholey MJ, Swain MV, Thiel N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent Mater 2011; 27: 1102-1110.
  • Reference 33- Benetti P, Kelly JR, Della Bona A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent Mater 2013; 29: 1166-1172.
  • Reference 34- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25.
  • Reference 35- Chevalier J, Cales B, Drouin JM. Low‐temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999; 82: 2150-2154.
  • Reference 36- Tholey MJ, Berthold C, Swain MV, Thiel N. Xrd2 micro-diffraction analysis of the interface between y-tzp and veneering porcelain: Role of application methods. Dent Mater 2010; 26: 545-52.
  • Reference 37- Tholey MJ, Swain MV, Thiel N. Sem observations of porcelain Y-TZP interface. Dent Mater 2009; 25: 857-862.
  • Reference 38- Catledge SA, Cook M, Vohra YK, Santos EM, McClenny MD, Moore KD. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J Mater Sci Mater Med 2003; 14: 863-867.
  • Reference 39- Thompson G. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000; 16: 235-243.
Year 2023, Volume: 57 Issue: 2, 108 - 114, 31.05.2023
https://doi.org/10.26650/eor.2023978293

Abstract

Project Number

24120

References

  • Reference 1- Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005; 21: 984-91.
  • Reference 2- Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004; 91: 349-355.
  • Reference 3- Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar, leucite-, mica- and zirconia-based ceramics. J Dent 2000; 28: 529-35.
  • Reference 4- Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004; 20: 449-456.
  • Reference 5- Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008; 24: 289-298
  • Reference 6- Larsson C, Wennerberg A. The clinical success o fzirconia-based crowns: a systematic review. Int JProsthodont 2014;27:33-43
  • Reference 7- Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005; 32: 180-7.
  • Reference 8- Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009; 5: 1668-77.
  • Reference 9- Kim J, Dhital S, Zhivago P, Kaizer MR, Zhang Y. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns. J Mech BehavBiomed Mater 2018;82:202-9.
  • Reference 10- Taskonak B, Borges GA, Mecholsky Jr JJ, Anusavice KJ, Moore BK, Yan J. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic. Dent Mater 2008; 24: 1149-1155
  • Reference 11- Göstemeyer G, Jendras M, Dittmer MP, Bach F-W, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 2010; 6: 4532-4538.
  • Reference 12- Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972; 55: 303-5.
  • Reference 13- Toraya H, Yoshimura M, Sōmiya S. Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984; 67: 119-21.
  • Reference 14- Guess PC, Kuliš A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008; 24: 1556-1567.
  • Reference 15- Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010; 104: 247-257
  • Reference 16- Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of cooling rate on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dent Mater 2011; 27: 906-914.
  • Reference 17- Komine F, Saito A, Kobayashi K, Koizuka M, Koizumi H, Matsumura H. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material. J Oral Sci 2010; 52: 647-652.
  • Reference 18- Da Sılva Rodrıgues, Camila, et al. Do thermal treatments affect the mechanical behavior of porcelain-veneered zirconia? A systematic review and meta-analysis. Dent Mater 2019; 35.5; 807-817.
  • Reference 19- Choi JE, Waddell JN, Swain MV. Pressed ceramics onto zirconia. Part 2: Indentation fracture and influence of cooling rate on residual stresses. Dent Mater 2011; 27: 1111-1118.
  • Reference 20- Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J Prosthet Dent 2012; 107: 163-169.
  • Reference 21- Bertolotti R, Shelby J. Viscosity of dental porcelain as a function of temperature. J Dent Res 1979; 58: 2001-2004.
  • Reference 22- Scherer GW. Relaxation in glass and composites. New York: Wiley; 1986
  • Reference 23- Swain, M. V., Mercurio, V., Tibballs, J. E., & Tholey, M. Thermal induced deflection of a porcelain–zirconia bilayer: Influence of cooling rate. Dent Mater 2019;35(4); 574-584.
  • Reference 24- Zhang ZP, Zhou SW, Li Q, Li W, Swain M. Residual stresses in fabrication of core-veneered ceramic prostheses. Adv Mater Res 2010; 97: 2241-2244.
  • Reference 25- Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. Vol. 17; John wiley & sons; 1976. Reference 26- Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel? Nature 1975; 258: 703-704.
  • Reference 27- De Jager N, de Kler M, van der Zel JM. The influence of different core material on the FEA-determined stress distribution in dental crowns. Dent Mater 2006; 22: 234-242.
  • Reference 28- Øilo M, Gjerdet NR, Tvinnereim HM. The firing procedure influences properties of a zirconia core ceramic. Dent Mater 2008; 24: 471-475.
  • Reference 29- Asaoka K, Kuwayama N, Tesk JA. Influence of tempering method on residual stress in dental porcelain. J Dent Res 1992; 71: 1623-1627.
  • Reference 30- Vita VM9 working instructions. [web page on the Internet]. Erişim 04.06.2014, http://vident.com/wp-content/uploads/2011/09/VITA-VM9-Working-Instructions_1190EN_0911.pdf
  • Reference 31- DeHoff P, Anusavice K, Vontivillu S. Analysis of tempering stresses in metal-ceramic disks. J Dent Res 1996; 75: 743-751.
  • Reference 32- Tholey MJ, Swain MV, Thiel N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent Mater 2011; 27: 1102-1110.
  • Reference 33- Benetti P, Kelly JR, Della Bona A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent Mater 2013; 29: 1166-1172.
  • Reference 34- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25.
  • Reference 35- Chevalier J, Cales B, Drouin JM. Low‐temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999; 82: 2150-2154.
  • Reference 36- Tholey MJ, Berthold C, Swain MV, Thiel N. Xrd2 micro-diffraction analysis of the interface between y-tzp and veneering porcelain: Role of application methods. Dent Mater 2010; 26: 545-52.
  • Reference 37- Tholey MJ, Swain MV, Thiel N. Sem observations of porcelain Y-TZP interface. Dent Mater 2009; 25: 857-862.
  • Reference 38- Catledge SA, Cook M, Vohra YK, Santos EM, McClenny MD, Moore KD. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J Mater Sci Mater Med 2003; 14: 863-867.
  • Reference 39- Thompson G. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000; 16: 235-243.
There are 38 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Original Research Articles
Authors

Yeşim Ölçer Us 0000-0003-4917-4899

Betül Tuncelli 0000-0001-5412-9297

Project Number 24120
Publication Date May 31, 2023
Submission Date August 3, 2021
Published in Issue Year 2023 Volume: 57 Issue: 2

Cite

EndNote Ölçer Us Y, Tuncelli B (May 1, 2023) Evaluation of the effects of thermal changes on the bond strength between zirconia framework and veneering ceramic during the firing process. European Oral Research 57 2 108–114.