Research Article
BibTex RIS Cite
Year 2019, Volume: 7 , 380 - 384, 24.11.2019

Abstract

References

  • Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angew. Chem. Int. Ed. 37, 772–773. Uauy, R., Olivares, M., Gonzalez, M. (1998). Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952–959. de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E.(1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566. Czarnik, A.W. (1992). Fluorescent Chemosensors for Ion and Molecule Recognition, first ed., A.C.S, Washington. Chen, Y., Wan, L., Yu, X., Li, W., Bian, Y. and Jiang, J. (2011). Rational Design and Synthesis for Versatile FRET Ratiometric Sensor for Hg2+ and Fe2+: A Flexible 8-hydroxyquinoline Benzoate Linked Bodipy-Porphyrin Dyad. Org. Lett., 13, 5774-5777. Jotterand, N., Pearce, D. A. and Imperiali, B. (2001). Asymmetric Synthesis of a New 8-Hydroxyquinoline-Derived α-Amino Acid and Its Incorporation in a Peptidylsensor for Divalent Zinc. J. Org. Chem., 66, 3224-3228. Zhao, Y., Lin, Z., Liao, H., Duan, C. and Meng, Q. (2006). A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg. Chem. Commun., 9, 966-968. Li, Z., Xi, P., Huang, L., Xie, G., Shi, Y., Liu, H., Xu, M., Chen, F. and Zeng, Z. (2011). A highly selective fluorescent chemosensor for Cd(II) based on 8-hydroxyquinoline platform. Inorg. Chem. Commun., 2011, 14, 1241-1244. Tian, H., Li, B., Wang, H., Li, Y., Wang, J., Zhao, S., Zhu, J., Wang, Q., Liu, W., Yaoa, X. and Tang, Y. (2011). A nanocontainer that releases a fluorescence sensor for cadmium ions in water and its biological applications. J. Mater. Chem., 21, 10298-10304. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133-1138 (1965). M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013. A.D. Becke, Density-functional exchange-energy approximationwith correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998).

Computational Studies on Quinoline Based Metal Chemosensors

Year 2019, Volume: 7 , 380 - 384, 24.11.2019

Abstract

The design and synthesis of sensors that selectively sense metal ions have a very important place in biological and environmental processes. Fluorescence sensor is one of the most important chemical sensors and is a powerful tool for imaging target molecules and ions in living organisms. Because it has high sensitivity and simultaneous imaging. Although there are many metal sensors available commercially, chemists are still designing sensors that are simpler, easier to synthesize, higher in sensitivity, selectivity and reliability to meet their needs. Hydroxy quinolines are used as fluorophore in metal chemosensors. 8-Hydroxyquinoline (8-HQ), an important fluorophore, exhibits poor fluorescence due to intramolecular proton transfer from oxygen to nitrogen (ESIPT-excited state intramolecular proton transfer). But they show bright fluorescence and photostability after they are attached to metal ions. Thus, the 8-HQ framework is commonly used to construct fluorescence sensors for many important metal ions. However, since the 8-HQ molecule has poor binding selectivity to many metal ions, chemosensors are designed by combining the appropriate binding units (ionophores). Computational calculations of the designed chemosensors have beenperfomed to determine the 3D geometries of the structures, to calculate the spectroscopic properties and to elucidate the mechanism of metal bonding. Calculations will be performed using the Density Functional Theory, the B3LYP hybrid function and the basic set of 6-311++(d,p).

References

  • Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angew. Chem. Int. Ed. 37, 772–773. Uauy, R., Olivares, M., Gonzalez, M. (1998). Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952–959. de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E.(1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566. Czarnik, A.W. (1992). Fluorescent Chemosensors for Ion and Molecule Recognition, first ed., A.C.S, Washington. Chen, Y., Wan, L., Yu, X., Li, W., Bian, Y. and Jiang, J. (2011). Rational Design and Synthesis for Versatile FRET Ratiometric Sensor for Hg2+ and Fe2+: A Flexible 8-hydroxyquinoline Benzoate Linked Bodipy-Porphyrin Dyad. Org. Lett., 13, 5774-5777. Jotterand, N., Pearce, D. A. and Imperiali, B. (2001). Asymmetric Synthesis of a New 8-Hydroxyquinoline-Derived α-Amino Acid and Its Incorporation in a Peptidylsensor for Divalent Zinc. J. Org. Chem., 66, 3224-3228. Zhao, Y., Lin, Z., Liao, H., Duan, C. and Meng, Q. (2006). A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg. Chem. Commun., 9, 966-968. Li, Z., Xi, P., Huang, L., Xie, G., Shi, Y., Liu, H., Xu, M., Chen, F. and Zeng, Z. (2011). A highly selective fluorescent chemosensor for Cd(II) based on 8-hydroxyquinoline platform. Inorg. Chem. Commun., 2011, 14, 1241-1244. Tian, H., Li, B., Wang, H., Li, Y., Wang, J., Zhao, S., Zhu, J., Wang, Q., Liu, W., Yaoa, X. and Tang, Y. (2011). A nanocontainer that releases a fluorescence sensor for cadmium ions in water and its biological applications. J. Mater. Chem., 21, 10298-10304. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133-1138 (1965). M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013. A.D. Becke, Density-functional exchange-energy approximationwith correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selcuk Gumus

Aysegul Gumus

Publication Date November 24, 2019
Published in Issue Year 2019Volume: 7

Cite

APA Gumus, S., & Gumus, A. (2019). Computational Studies on Quinoline Based Metal Chemosensors. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 380-384.