Research Article
BibTex RIS Cite

Yonca Kuru Otunun İn Vitro Ruminal Gaz Üretimi, Metan Salınımı, Organik Asit ve Protozoa Sayısı Üzerine Defne Uçucu Yağının (Laurusnobilis L.) Etkisi

Year 2020, Volume: 17 Issue: 3, 283 - 289, 01.12.2020
https://doi.org/10.32707/ercivet.828806

Abstract

Bu in vitro çalışmanın amacı, defne (Laurusnobilis L.) yapraklarından elde edilen defne uçucu yağının yonca kuru otunun ruminal gaz üretimini, metan emisyonunu, organik asitler ve protozoa üzerine etkilerini araştırmaktır. Defne uçucu yağının bileşenleri analiz edildi. Rumen sıvısına 0, 50, 100 ve 200 mg/L (L0, L50, L100 ve L200) seviyelerinde defne uçucu yağı eklenmesinin in vitro ruminal sindirime etkileri in vitro gaz üretimi ile belirlendi. 50 mg/L defne uçucu yağı ilavesi toplam gaz ve metan üretimini (ml), organik madde sindirimini (OMD) ve metabolik enerji (ME) değerlerini düşürmüştür. Öte yandan bu yağın 100 mg/L ve 200 mg / L seviyelerinde eklenmesinin in vitro toplam gaz, metan (ml), ME ve OMD değerlerini (P <0.05) değiştirmediği görülmüştür. Grup L50 ve L100'de ruminal amonyak nitrojen seviyeleri azalırken, Grup L200'de değişiklik saptanmadı (P <0.05). Ruminal protozoa sayıları, defne uçucu yağının 50-200 mg / L aralığında eklenmesinden etkilenmedi (P> 0.05). Yonca otunun in vitro fermentasyon sıvısındaki toplam uçucu yağ asitleri (TVFA) ve butirik asit (BA) miktarları tüm gruplarda düşüktü. Defne uçucu yağının (Laurusnobilis L.) in vitro sindirim parametrelerinde doza bağlı değişikliklere neden olduğu belirlendi. Sonuç olarak Laurusnobilis L. uçucu yağın-daki etken maddelerin ruminal fermantasyon üzerinde düzenleme gücüne sahip olabileceği tespit edilmiştir. Laurusno-bilis L. Uçucu yağının hem ekolojik hem de sindirim sistemi fizyolojisi açısından etkilerini farklı yem türleri ve uçucu yağ kombinasyonları kullanarak ortaya çıkarmak için daha fazla araştırmaya ihtiyaç olduğu düşünülmektedir.

References

  • AOAC official methods of analysis (16th edn). AOAC International, Arlington, VA USA; 1995.
  • Ayanoğlu F, Mert A, Kaya A, Köse E. Hatay yöresin-de doğal olarak yetişen defne (Laurusnobilis L.) bitkisinin kalite özelliklerinin belirlenmesi ve se-leksiyonu, Tübitak Proje No: 108O878, 2010; p. 268.
  • Benchaar C, Petit HV, Berthiaume R, Whyte T D, Chouinard PY. Effects of addition of essential oils and monensin premix on digestion, ruminal fer-mentation, milk production, and milk composition in dairy cows. J Dairy Sci 2006; 89(11): 4352-64.
  • Blümmel M, Makkar H PS, Becker K. In vitro gas production: A technique revisited. J Anim PhysAnim Nutr 1997; 77(1): 24-34.
  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Techno-logy 2012; 176(1-4): 78-93.
  • Boyne AW, Eadıe JM, Raıtt K. The development and testing of a method of counting rumen ciliate protozoa. J Gen Microbiol 1957; 17(2): 414-23.
  • Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z. Evaluation of different essential oils in mo-dulating methane and ammonia production, ru-men fermentation, and rumen bacteria in vitro. Anim Feed Sci Technology 2016; 215: 25-36.
  • Ellis JL, Bannink A, France J, Kebreab E, Dijkstra J. Evaluation of enteric methane prediction equa-tions for dairy cows used in whole farm models. Glob Chang Biol 2010; 16(12):3246-56.
  • Gemeda BS. The potential of tropical tannin rich browses in reduction of enteric methane. Appro Poult Dairy Vet Sci 2018; 2(3):154-62.
  • Gerber P, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, A Rotz, Dell C, Adesogan AT, Yang WZ, Tricarico JM, Kebreab E, Waghorn G, Dijkstra J, Oosting S. Technical options for the mitigation of direct methane and nitrous oxide emissions from lives-tock: A review. Animal 2013; 2(2): 220-34.
  • Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabo-lism. Phytochemistry 2007; 68(22-24): 2831-46.
  • Hook SE, André Denis GW, Brian WM. Methano-gens: Methane producers of the rumen and miti-gation strategies. Archaea 2010; ID 945785: doi:10.1155/2010/945785.
  • Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. Specıal topıcs-mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci2013; 91(11): 5045-69.
  • Ulger I, Kamalak A, Kurt O, Kaya E, Guven I. Compa-ración de la composición química y el potencial anti-metanogénico de las hojas de Liquidambar orientalis con hojas de Laurus nobilis y Eucalyp-tus globulus utilizando la técnica de producción de gas in vitro. Ciencia Invest Agraria 2017; 44(1): 75-82.
  • Jiménez-Peralta FS, Salem AZM, Mejia-Hernández P, González-Ronquillo M, Albarrán-Portillo B, Rojo-Rubio R, Tinoco-Jaramillo JL. Influence of individual and mixed extracts of two tree species on in vitro gas production kinetics of a high con-centrate diet fed to growing lambs. Livestock Sci 2011; 136(2-3): 192-200.
  • Kara K, Ozkaya S, Baytok E, Guclu BK, Aktug E, Erbas S. Effect of phenological stage on nutrient composition, in vitro fermentation and gas pro-duction kinetics of Plantago lanceolata herbage. Vet Med 2018; 63: 251-60.
  • Karık Ü, Çiçek F, Tutar M, Ayas F. Türkiye defne (Laurus nobilis L.) populasyonlarının uçucu yağ bileşenleri. Anadolu J of Aari 2015; 25(1): 1-16.
  • Makkar HPS, Blümmel M, Becker K. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim Feed Sci Technology 1997; 67: 245-51.
  • Mandal GP, Roy A, Patra AK. Effects of plant extracts rich in tannins , saponins and essential oils on rumen fermentation and conjugated lino-leic acid conentrations in vitro. Research Article Indian J Anim 2016; 55: 49-60.
  • Manh NS, Wanapat M, Uriyapongson S, Khejornsart P, Chanthakhoun V. Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afr J Agric Res 2012; 7(14): 2142-8.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are ıncubated with rumen liquor in vitro. The J Agricultural Sci 1979; 93(1): 217-22.
  • Newbold CJ, McIntosh FM, Williams P, Riccardo L, Wallace RJ. Effects of a specific blend of essen-tial oil compounds on rumen fermentation. Anim. Feed Sci Techn 2004; 114(1-4): 105-12.
  • Onel SE, Aksu T. Esansiyel / uçucu yağlar: Esansi-yel / uçucu yağların hayvan beslemede kullanımı. Türkiye Klinikleri Hay Bes ve Besl Has-Özel Ko-nular 2017; 3(1): 21-9.
  • Patra AK, Yu Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 2012; 78(12): 4271-80.
  • Patra AK, Yu Z. Effective reduction of enteric metha-ne production by a combination of nitrate and saponin without adverse effect on feed degrada-bility, fermentation, or bacterial and archaeal communities of the rumen. Bioresource Techn 2013; 148: 352-60.
  • Patra PK, Saeki T, Edward JD, Ishijima K, Umezawa T, Ito A, Aoki S, Morimoto S, Kort EA, Crotwell A, Kumar KR, Nakazawa T. Regional methane emission estimation based on observed atmosp-heric concentrations (2002-2012). J Meteor Soc Japan 2016; 94(1): 91-113.
  • Ravindra K, Kamra DN, Neeta A, Chaudhary LC. Effect of eucalyptus (Eucalyptus globulus) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim Nutr Feed Techn 2009; 9: 237-43.
  • Sallam SM, Bueno IC, Nasser ME, Abdalla AL. Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Italian J Anim Sci 2010; 9(3): 58.
  • Sangun MK, Aydin E, Timur M, Karadeniz H, Calis-kan M, Ozkan A. Comparison of chemical com-position of the essential oil of laurus nobilis l. leaves and fruits from different regions of Hatay, Turkey. J Environ Biol 2007; 28(4):731-3.
  • Thornto PK, Pierre JG. Climate change and the growth of the livestock sector in developing co-untries. Mitigation Adapt Strateg Glob Change 2010; 15(2):169-84.
  • Tural S, Turhan S. Antimicrobial and antioxidant pro-perties of thyme (Thymus Vulgaris L.), rosemary (Rosmarinus Officinalis L.) and laurel (Lauris Nobilis L.) essential oils and their mixtures. Gida J of Food 2017; 42(5): 588-96.
  • Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nons-tarch polysaccharides in relation to animal nutri-tion. J Dairy Sci 1991; 74(10): 3583-97.
  • Wanapat M, Cherdthong A, Phesatcha K, Kang S. Dietary sources and their effects on animal pro-duction and environmental sustainability. Anim Nutr 2015; 1(3): 96-103.
  • Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Wei S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci 2020; 103(3): 2303-14.

The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage

Year 2020, Volume: 17 Issue: 3, 283 - 289, 01.12.2020
https://doi.org/10.32707/ercivet.828806

Abstract

The aim of the present in vitro study was to investigate the effects of laurel volatile oil, (Laurusnobilis L.) on ruminal gas production, methane emission, organic acids and protozoa counts of Alfalfa herbage. The components of laurel volatile oil were analysed. The effects of the addition of laurel volatile oil, at levels of 0, 50, 100 and 200 mg/L (L0, L50, L100 and L200), to the rumen fluid on in vitroruminal digestion were determined using byin vitro gas produc-tion technique. The addition of 50 mg/L of laurel volatile oil decreased total gas and methane production (ml), organic matter digestion (OMD), and metabolic energy (ME) values. On the other hand, the addition of this oil at levels of 100 mg/L and 200 mg/L was observed not to alter the in vitro total gas, methane (ml), ME and OMD values (P<0.05). While ruminal ammonia nitrogen levels decreased in Groups L50 and L100, no alteration was detected in Group L200 (P<0.05). Ruminal protozoa counts did not affected by the addition of laurel volatile oil within a range of 50-200 mg/L (P>0.05). The amounts of the total volatile fatty acids (TVFA) and butyric acid (BA) in the in vitro fermentation fluid of alfalfa herbage were low in all groups. It was determined that laurel volatile oil (LaurusnobilisL.) caused dose-dependent alterations in the in vitro digestion parameters.As a result, it has been determined that the active substanc-es in Laurusnobilis L. essential oil may have regulation power on ruminal fermentation. It is thought that more research is needed to reveal the effects of Laurusnobilis L. volatile in terms of both ecological and digestive system physiology by using different feed types and essential oil combinations

References

  • AOAC official methods of analysis (16th edn). AOAC International, Arlington, VA USA; 1995.
  • Ayanoğlu F, Mert A, Kaya A, Köse E. Hatay yöresin-de doğal olarak yetişen defne (Laurusnobilis L.) bitkisinin kalite özelliklerinin belirlenmesi ve se-leksiyonu, Tübitak Proje No: 108O878, 2010; p. 268.
  • Benchaar C, Petit HV, Berthiaume R, Whyte T D, Chouinard PY. Effects of addition of essential oils and monensin premix on digestion, ruminal fer-mentation, milk production, and milk composition in dairy cows. J Dairy Sci 2006; 89(11): 4352-64.
  • Blümmel M, Makkar H PS, Becker K. In vitro gas production: A technique revisited. J Anim PhysAnim Nutr 1997; 77(1): 24-34.
  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Techno-logy 2012; 176(1-4): 78-93.
  • Boyne AW, Eadıe JM, Raıtt K. The development and testing of a method of counting rumen ciliate protozoa. J Gen Microbiol 1957; 17(2): 414-23.
  • Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z. Evaluation of different essential oils in mo-dulating methane and ammonia production, ru-men fermentation, and rumen bacteria in vitro. Anim Feed Sci Technology 2016; 215: 25-36.
  • Ellis JL, Bannink A, France J, Kebreab E, Dijkstra J. Evaluation of enteric methane prediction equa-tions for dairy cows used in whole farm models. Glob Chang Biol 2010; 16(12):3246-56.
  • Gemeda BS. The potential of tropical tannin rich browses in reduction of enteric methane. Appro Poult Dairy Vet Sci 2018; 2(3):154-62.
  • Gerber P, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, A Rotz, Dell C, Adesogan AT, Yang WZ, Tricarico JM, Kebreab E, Waghorn G, Dijkstra J, Oosting S. Technical options for the mitigation of direct methane and nitrous oxide emissions from lives-tock: A review. Animal 2013; 2(2): 220-34.
  • Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabo-lism. Phytochemistry 2007; 68(22-24): 2831-46.
  • Hook SE, André Denis GW, Brian WM. Methano-gens: Methane producers of the rumen and miti-gation strategies. Archaea 2010; ID 945785: doi:10.1155/2010/945785.
  • Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. Specıal topıcs-mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci2013; 91(11): 5045-69.
  • Ulger I, Kamalak A, Kurt O, Kaya E, Guven I. Compa-ración de la composición química y el potencial anti-metanogénico de las hojas de Liquidambar orientalis con hojas de Laurus nobilis y Eucalyp-tus globulus utilizando la técnica de producción de gas in vitro. Ciencia Invest Agraria 2017; 44(1): 75-82.
  • Jiménez-Peralta FS, Salem AZM, Mejia-Hernández P, González-Ronquillo M, Albarrán-Portillo B, Rojo-Rubio R, Tinoco-Jaramillo JL. Influence of individual and mixed extracts of two tree species on in vitro gas production kinetics of a high con-centrate diet fed to growing lambs. Livestock Sci 2011; 136(2-3): 192-200.
  • Kara K, Ozkaya S, Baytok E, Guclu BK, Aktug E, Erbas S. Effect of phenological stage on nutrient composition, in vitro fermentation and gas pro-duction kinetics of Plantago lanceolata herbage. Vet Med 2018; 63: 251-60.
  • Karık Ü, Çiçek F, Tutar M, Ayas F. Türkiye defne (Laurus nobilis L.) populasyonlarının uçucu yağ bileşenleri. Anadolu J of Aari 2015; 25(1): 1-16.
  • Makkar HPS, Blümmel M, Becker K. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim Feed Sci Technology 1997; 67: 245-51.
  • Mandal GP, Roy A, Patra AK. Effects of plant extracts rich in tannins , saponins and essential oils on rumen fermentation and conjugated lino-leic acid conentrations in vitro. Research Article Indian J Anim 2016; 55: 49-60.
  • Manh NS, Wanapat M, Uriyapongson S, Khejornsart P, Chanthakhoun V. Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afr J Agric Res 2012; 7(14): 2142-8.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are ıncubated with rumen liquor in vitro. The J Agricultural Sci 1979; 93(1): 217-22.
  • Newbold CJ, McIntosh FM, Williams P, Riccardo L, Wallace RJ. Effects of a specific blend of essen-tial oil compounds on rumen fermentation. Anim. Feed Sci Techn 2004; 114(1-4): 105-12.
  • Onel SE, Aksu T. Esansiyel / uçucu yağlar: Esansi-yel / uçucu yağların hayvan beslemede kullanımı. Türkiye Klinikleri Hay Bes ve Besl Has-Özel Ko-nular 2017; 3(1): 21-9.
  • Patra AK, Yu Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 2012; 78(12): 4271-80.
  • Patra AK, Yu Z. Effective reduction of enteric metha-ne production by a combination of nitrate and saponin without adverse effect on feed degrada-bility, fermentation, or bacterial and archaeal communities of the rumen. Bioresource Techn 2013; 148: 352-60.
  • Patra PK, Saeki T, Edward JD, Ishijima K, Umezawa T, Ito A, Aoki S, Morimoto S, Kort EA, Crotwell A, Kumar KR, Nakazawa T. Regional methane emission estimation based on observed atmosp-heric concentrations (2002-2012). J Meteor Soc Japan 2016; 94(1): 91-113.
  • Ravindra K, Kamra DN, Neeta A, Chaudhary LC. Effect of eucalyptus (Eucalyptus globulus) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim Nutr Feed Techn 2009; 9: 237-43.
  • Sallam SM, Bueno IC, Nasser ME, Abdalla AL. Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Italian J Anim Sci 2010; 9(3): 58.
  • Sangun MK, Aydin E, Timur M, Karadeniz H, Calis-kan M, Ozkan A. Comparison of chemical com-position of the essential oil of laurus nobilis l. leaves and fruits from different regions of Hatay, Turkey. J Environ Biol 2007; 28(4):731-3.
  • Thornto PK, Pierre JG. Climate change and the growth of the livestock sector in developing co-untries. Mitigation Adapt Strateg Glob Change 2010; 15(2):169-84.
  • Tural S, Turhan S. Antimicrobial and antioxidant pro-perties of thyme (Thymus Vulgaris L.), rosemary (Rosmarinus Officinalis L.) and laurel (Lauris Nobilis L.) essential oils and their mixtures. Gida J of Food 2017; 42(5): 588-96.
  • Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nons-tarch polysaccharides in relation to animal nutri-tion. J Dairy Sci 1991; 74(10): 3583-97.
  • Wanapat M, Cherdthong A, Phesatcha K, Kang S. Dietary sources and their effects on animal pro-duction and environmental sustainability. Anim Nutr 2015; 1(3): 96-103.
  • Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Wei S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci 2020; 103(3): 2303-14.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Süleyman Ercüment Önel This is me 0000-0001-6599-0541

Taylan Aksu This is me

Kanber Kara This is me

Devrim Sarıpınar Aksu This is me

Publication Date December 1, 2020
Submission Date July 27, 2020
Acceptance Date September 30, 2020
Published in Issue Year 2020 Volume: 17 Issue: 3

Cite

APA Önel, S. E., Aksu, T., Kara, K., Sarıpınar Aksu, D. (2020). The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 17(3), 283-289. https://doi.org/10.32707/ercivet.828806
AMA Önel SE, Aksu T, Kara K, Sarıpınar Aksu D. The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage. Erciyes Üniv Vet Fak Derg. December 2020;17(3):283-289. doi:10.32707/ercivet.828806
Chicago Önel, Süleyman Ercüment, Taylan Aksu, Kanber Kara, and Devrim Sarıpınar Aksu. “The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17, no. 3 (December 2020): 283-89. https://doi.org/10.32707/ercivet.828806.
EndNote Önel SE, Aksu T, Kara K, Sarıpınar Aksu D (December 1, 2020) The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17 3 283–289.
IEEE S. E. Önel, T. Aksu, K. Kara, and D. Sarıpınar Aksu, “The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage”, Erciyes Üniv Vet Fak Derg, vol. 17, no. 3, pp. 283–289, 2020, doi: 10.32707/ercivet.828806.
ISNAD Önel, Süleyman Ercüment et al. “The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17/3 (December 2020), 283-289. https://doi.org/10.32707/ercivet.828806.
JAMA Önel SE, Aksu T, Kara K, Sarıpınar Aksu D. The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage. Erciyes Üniv Vet Fak Derg. 2020;17:283–289.
MLA Önel, Süleyman Ercüment et al. “The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. 3, 2020, pp. 283-9, doi:10.32707/ercivet.828806.
Vancouver Önel SE, Aksu T, Kara K, Sarıpınar Aksu D. The Effects of Laurel Volatile Oil (Laurusnobilis L.) on In Vitro Ruminal Gas Production of Methane Emission, Organic Acids and Protozoa Counts Alfalfa Herbage. Erciyes Üniv Vet Fak Derg. 2020;17(3):283-9.