Araştırma Makalesi
BibTex RIS Kaynak Göster

Kolekalsiferolün Sfingomyelin Model Membranları ile Etkileşiminin Kızılötesi Spektroskopik ve Kalorimetrik Çalışmaları

Yıl 2022, Cilt: 38 Sayı: 2, 383 - 392, 23.08.2022

Öz

Bu çalışmada, kolekalsiferol ve sfingomyelin (SM) çok katmanlı veziküller (MLV'ler) arasındaki etkileşimleri, vitamin konsantrasyonuna ve sıcaklığa bağlı olarak araştırmak için ilk kez Fourier transform kızılötesi (FTIR) spektroskopisi ve diferansiyel taramalı kalorimetri (DSC) kullanılmıştır. Mevcut sonuçlar, saf SM MLV'lere kolekalsiferol eklendiğinde ana faz geçiş sıcaklığının düştüğünü, sistemin düzensiz olduğunu ve sistem dinamiğinin hem jel hem de sıvı kristal fazlarda arttığını göstermiştir. Baş grup bölgesi için, kolekalsiferol ile etkileşim sonrası hidrojen bağı da gözlenmiştir.

Kaynakça

  • [1] Coulston, A.M., Boushey, C., Ferruzzi, M., Nutrition in the Prevention and Treatment of Disease, Academic Press. p. 818. ISBN 9780123918840. Archived from the original on 30 December 2016. Retrieved 29 December 2016.
  • [2] Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health, The American Journal of Clinical Nutrition, 88(2)(2008), 491S–499S.
  • [3] Plum, L.A., & DeLuca, H.F., Vitamin D, disease and therapeutic opportunities, Nat Rev Drug Discov, 9(2010), 941–955.
  • [4] Hoeck, A.D., & Pall, M.L,. Will vitamin D supplementation ameliorate diseases characterized by chronic inflammation and fatigue?, Med Hypotheses, 76(2011), 208–213.
  • [5] Holick, M.F., Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis, Am J Clin Nutr, 79(2004), 362–371.
  • [6] Tagliaferri, S., Porri, D., De Giuseppe, R., Manuelli, M., Alessio, F., and Cena, H., The controversial role of vitamin D as an antioxidant: results from randomised controlled trials, Nutrition Research Reviews, 32(1)(2019), 99 – 105.
  • [7] Chabas, J.F., Stephan, D., Marqueste, T., Garcia, S., Lavaut, M.N., Nguyen, C., Legre, R., Khrestchatisky, M., Decherchi, P., Feron, F., Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury, PLoS One, 8(2013), e65034.
  • [8] Hua, F., Reiss, J.I., Tang, H., Wang, J., Fowler, X., Sayeed, I., Stein, D.G., Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury, Horm. Behav., 61(2012), 642-651.
  • [9] Longoni, A., Kolling, J., dos Santos, T.M., dos Santos, J.P., da Silva, J.S., Pettenuzzo, L., Gonçalves, C.A., de Assis, A.M., Quincozes-Santos, A., Wyse, A.T.S., 1,25-Dihydroxyvitamin D3 exerts neuroprotective effects in an ex vivo model of mild hyperhomocysteinemia, Int. J. Dev. Neurosci., 48(2016), 71-79.
  • [10] Tang, H., Hua, F., Wang, J., Sayeed, I., Wang, X., Chen, Z., Yousuf, S., Atif, F., Stein, D.G., Progesterone and vitamin D: improvement after traumatic brain injury in middle-aged rats, Horm. Behav., 64(2013), 527-538.
  • [11] Tang, H., Hua, F., Wang, J., Yousuf, S., Atif, F., Sayeed, I., Stein, D.G., Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury, Brain Inj., 29(2015), 1165-1174.
  • [12] Jiang, P., Zhang, L.H., Cai, H.L., De Li, H., Liu, Y.P., Tang, M.M., Dang, R.L., Zhu, W.Y., Xue, Y., He, X., Neurochemical effects of chronic administration of calcitriol in rats, Nutrients, 6(2014), 6048-6059.
  • [13] Camargo, A., Dalmagro, A.P., Rikel, L., da Silva, E.B., Simão da Silva, K.A.B., Zeni, A.L.B., Cholecalciferol counteracts depressive-like behavior and oxidative stress induced by repeated corticosterone treatment in mice, Eur. J. Pharmacol., 833(2018), 451-461.
  • [14] Souza, S.V.S., da Rosa, P.B., Neis, V.B., Moreira, J.D., Rodrigues, A.L.S., Moretti, M., Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression, Naunyn Schmiedeberg’s Arch. Pharmacol., 393(2020), 111-120.
  • [15] Yamini, P., Ray, R.S., Chopra, K., Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease, Inflammopharmacology, 26(2018), 39-55.
  • [16] Mokhtari, Z., Hekmatdoost, A., Nourian, M., Antioxidant efficacy of vitamin D, Journal of Parathyroid Disease, 5(1)(2017), 11–16.
  • [17] Castelli, F., Gurrieri, S., Raudino, A., Cambria, A., Effect of cholecalcipherol on thermotropic behaviour of phosphatidylethanolamine and its N-methyl derivatives, Chem. Phys. Lipids, 48(1–2)(1988), 69–76.
  • [18] Merz, K., Sternberg, B., Incorporation of vitamin D3-derivatives in liposomes of different lipid types, J. Drug Target, 2(5)(1994), 411–417.
  • [19] Elgavish, A., Rifkind, J., Sacktor, B., In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes, J. Membr. Biol., 72(1-2)(1983), 85–91.
  • [20] Kamal, A., Pal, A., Raghunathan, V.A., Modulated phases of lipid membranes induced by sterol derivatives, Soft Matter, 8(2012), 11600–11603.
  • [21] Bondar, O.P., Rowe, E.S., Differential scanning calorimetric study of the effect of vitamin D3 on the thermotropic phase behavior of lipids model systems, Biochim. Biophys. Acta, 1240(1995), 125–132.
  • [22] Sahin, I., Cholecalciferol has strong effect on the order and dynamics of DPPC membranes: A combined Fourier transform infrared spectroscopy and differential scanning calorimetry study, Vibrational Spectroscopy, 113(2021), 103207.
  • [23] Severcan, F., Sahin, I., Kazancı, N., Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry, Biochim. Biophys. Acta, 1668(2005), 215–222.
  • [24] Biruss, B., Dietl, R., Valenta, C., The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes, Chem. Phys. Lipids, 148(2007), 84-90.
  • [25] Villalain, J., Arranda, F.J., Gomez-Fernandez, J.C., Calorimetric and infrared spectroscopic studies of the interaction of a-tocopherol and a-tocopheryl acetate with phospholipid vesicles, Eur. J. Biochem., 158(1986), 141-147.
  • [26] Nyholm, T., Nylund, M., Söderholm, A., and Slotte, J. P., Properties of Palmitoyl Phosphatidylcholine, Sphingomyelin, and Dihydrosphingomyelin Bilayer Membranes as Reported by Different Fluorescent Reporter Molecules, Biophys J., 84(2)(2003), 987–997.
  • [27] Niemelä, P.S., Hyvönen, M.T., Vattulainen, I., Influence of chain length and unsaturation on sphingomyelin bilayers, Biophys J., 90(3)(2006), 851-63.
  • [28] Vénien, C., and Le Grimellec, C., Phospholipid asymmetry in renal brush-border membranes, Biochim. Biophys. Acta., 942(1988), 159–168.
  • [29] Sariisik, E., Kocak, M., Kucuk Baloglu, F., Severcan, F., Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes, Biochim. Biophys. Acta Biomembr., 1861(2019), 810–818.
  • [30] Zhang, Y.P., Lewis, R.N., Hodges, R.S., McElhaney, R.N., Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies, Biophys. J., 68(1995), 847–857.
  • [31] Arouri, A., Dathe, M., Blume, A., Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes, Biochim. Biophys. Acta, 1788(2009), 650–659.
  • [32] Riske, K.A., Barroso, R.P., Vequi-Suplicy, C.C., Germano, R., Henriques, V.B., Lamy, M.T., Lipid bilayer pre-transition as the beginning of the melting process, Biochim. Biophys. Acta, 1788(2009), 954–963.
  • [33] de Almeida, R.F.M., Fedorov, A., Prieto, M., Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts, Biophys. J., 85(2003), 2406-2416.
  • [34] Maulik, P.R., Shipley, G.G., N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine, Biochemistry, 35(1996), 8025-8034.
  • [35] Arsova, Z., González-Ramírez, E.J., M.Goñi, F., Tristram-Nagle, S., Nagle, J.F., Phase behavior of palmitoyl and egg sphingomyelin, Chemistry and Physics of Lipids, 213(2018), 102-110.
  • [36] Wrobel, D., Appelhans, D., Signorelli, M., Wiesner, B., Fessas, D., Scheler, U., Voit, B., Maly, J., Interaction study between maltose-modified PPI dendrimers and lipidic model membranes, Biochim. Biophys. Acta Biomembr., 1848(2015), 1490–1501.
  • [37] Sanchez-Bueno, A., Watanabe, S., Maria Jose, S., Saito, T., Studies of confirmation and interaction of the cytoclohexenone and acetyl group of progesterone with liposomes, J. Steroid Biochem. Mol. Biol., 38(1991), 173–179.
  • [38] Custódio, J.A., Almeida, L.M., Madeira, V.M.C., The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes, Biochim. Biophys. Acta Biomembr., 1150(1993), 123–129.
  • [39] Sarpietro, M.G., Accolla, M.L., Cova, A., Prezzavento, O., Castelli, F., Ronsisvalle, S., DSC investigation of the effect of the new sigma ligand PPCC on DMPC lipid membrane, Int. J. Pharm., 469(2014), 88–93.
  • [40] Toyran, N., Severcan, F., Competitive effect of vitamin D2 and Ca2+ on phospholipid model membranes: an FTIR study, Chem. Phys. Lipids, 123(2003), 165–176.
  • [41] Bondar, O.P., Rowe, E.S., Differential scanning calorimetric study of the effect of vitamin D3 on the thermotropic phase behavior of lipids model systems, Biochim. Biophys. Acta, 1240(1995), 125–132.
  • [42] Castelli, F., Gurrieri, S., Raudino, A., Cambria, A., Effect of cholecalcipherol on thermotropic behaviour of phosphatidylethanolamine and its N-methyl derivatives, Chem. Phys. Lipids, 48(1–2)(1988), 69–76.
  • [43] Turker, S., Wassall, S., Stillwell, W., Severcan, F., Convulsant agent pentylenetetrazol does not alter the structural and dynamical properties of dipalmitoylphosphatidylcholine model membranes, J. Pharm. Biomed. Anal., 54(2011), 379-386.
  • [44] Baber, J., Ellena, J.F., Cafiso, D.S., Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy, Biochemistry, 34(1995), 6533-6539.
  • [45] Aleskndrany, A., Sahin, I., The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies, Biochimica et Biophysica Acta (BBA) – Biomembranes, 1862(6)(2020), 183245.
  • [46] Do, T.T.T., Dao, U.P.N., Bui, H.T., Nguyen, T.T., Effect of electrostatic interaction between fluoxetine and lipid CrossMark membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR, Chem. Phys. Lipids, 207(2017), 10–23. [47] Ergun S., Demir, P., Uzbay, T., Severcan, F., Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes, Biochim. Biophys. Acta Biomembr., 1838(2014), 2798–2806.
  • [48] Casal, H.L., Mantsch, H.H., Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy, Biochim. Biophys. Acta, 779(1984), 381-401.
  • [49] Harrison, J.E., Groundwater, P.W., Brain, K.R., Hadgraft, J., Azone® induced fluidity in human stratum corneum. A Fourier transform infrared spectroscopy investigation using the perdeuterated analogue, J. Control. Release, 41(1996), 283-290.
  • [50] Chen, H., Mendelsohn, R., Rerek, M.E., Moore, D.J., Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2, Biochim. Biophys. Acta, 1468(2000), 293-303.
  • [51] Fanani, M.L., Maggio, B., The many faces (and phases) of ceramide and sphingomyelin I - single lipids, Biophys Rev., 9(5)(2017), 589–600.
  • [52] Casal, H.L., Mantsch, H.H., Paltauf, F., Hauser, H., Infrared and 31P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines, Biochim. Biophys. Acta, 919(1987), 275–286.
  • [53] Niemelä, P.S., Hyvönen, M.T., Vattulainen, I., Influence of chain length and unsaturation on sphingomyelin bilayers, Biophys J, 90(3)(2006), 851-63.

Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes

Yıl 2022, Cilt: 38 Sayı: 2, 383 - 392, 23.08.2022

Öz

Kaynakça

  • [1] Coulston, A.M., Boushey, C., Ferruzzi, M., Nutrition in the Prevention and Treatment of Disease, Academic Press. p. 818. ISBN 9780123918840. Archived from the original on 30 December 2016. Retrieved 29 December 2016.
  • [2] Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health, The American Journal of Clinical Nutrition, 88(2)(2008), 491S–499S.
  • [3] Plum, L.A., & DeLuca, H.F., Vitamin D, disease and therapeutic opportunities, Nat Rev Drug Discov, 9(2010), 941–955.
  • [4] Hoeck, A.D., & Pall, M.L,. Will vitamin D supplementation ameliorate diseases characterized by chronic inflammation and fatigue?, Med Hypotheses, 76(2011), 208–213.
  • [5] Holick, M.F., Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis, Am J Clin Nutr, 79(2004), 362–371.
  • [6] Tagliaferri, S., Porri, D., De Giuseppe, R., Manuelli, M., Alessio, F., and Cena, H., The controversial role of vitamin D as an antioxidant: results from randomised controlled trials, Nutrition Research Reviews, 32(1)(2019), 99 – 105.
  • [7] Chabas, J.F., Stephan, D., Marqueste, T., Garcia, S., Lavaut, M.N., Nguyen, C., Legre, R., Khrestchatisky, M., Decherchi, P., Feron, F., Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury, PLoS One, 8(2013), e65034.
  • [8] Hua, F., Reiss, J.I., Tang, H., Wang, J., Fowler, X., Sayeed, I., Stein, D.G., Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury, Horm. Behav., 61(2012), 642-651.
  • [9] Longoni, A., Kolling, J., dos Santos, T.M., dos Santos, J.P., da Silva, J.S., Pettenuzzo, L., Gonçalves, C.A., de Assis, A.M., Quincozes-Santos, A., Wyse, A.T.S., 1,25-Dihydroxyvitamin D3 exerts neuroprotective effects in an ex vivo model of mild hyperhomocysteinemia, Int. J. Dev. Neurosci., 48(2016), 71-79.
  • [10] Tang, H., Hua, F., Wang, J., Sayeed, I., Wang, X., Chen, Z., Yousuf, S., Atif, F., Stein, D.G., Progesterone and vitamin D: improvement after traumatic brain injury in middle-aged rats, Horm. Behav., 64(2013), 527-538.
  • [11] Tang, H., Hua, F., Wang, J., Yousuf, S., Atif, F., Sayeed, I., Stein, D.G., Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury, Brain Inj., 29(2015), 1165-1174.
  • [12] Jiang, P., Zhang, L.H., Cai, H.L., De Li, H., Liu, Y.P., Tang, M.M., Dang, R.L., Zhu, W.Y., Xue, Y., He, X., Neurochemical effects of chronic administration of calcitriol in rats, Nutrients, 6(2014), 6048-6059.
  • [13] Camargo, A., Dalmagro, A.P., Rikel, L., da Silva, E.B., Simão da Silva, K.A.B., Zeni, A.L.B., Cholecalciferol counteracts depressive-like behavior and oxidative stress induced by repeated corticosterone treatment in mice, Eur. J. Pharmacol., 833(2018), 451-461.
  • [14] Souza, S.V.S., da Rosa, P.B., Neis, V.B., Moreira, J.D., Rodrigues, A.L.S., Moretti, M., Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression, Naunyn Schmiedeberg’s Arch. Pharmacol., 393(2020), 111-120.
  • [15] Yamini, P., Ray, R.S., Chopra, K., Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease, Inflammopharmacology, 26(2018), 39-55.
  • [16] Mokhtari, Z., Hekmatdoost, A., Nourian, M., Antioxidant efficacy of vitamin D, Journal of Parathyroid Disease, 5(1)(2017), 11–16.
  • [17] Castelli, F., Gurrieri, S., Raudino, A., Cambria, A., Effect of cholecalcipherol on thermotropic behaviour of phosphatidylethanolamine and its N-methyl derivatives, Chem. Phys. Lipids, 48(1–2)(1988), 69–76.
  • [18] Merz, K., Sternberg, B., Incorporation of vitamin D3-derivatives in liposomes of different lipid types, J. Drug Target, 2(5)(1994), 411–417.
  • [19] Elgavish, A., Rifkind, J., Sacktor, B., In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes, J. Membr. Biol., 72(1-2)(1983), 85–91.
  • [20] Kamal, A., Pal, A., Raghunathan, V.A., Modulated phases of lipid membranes induced by sterol derivatives, Soft Matter, 8(2012), 11600–11603.
  • [21] Bondar, O.P., Rowe, E.S., Differential scanning calorimetric study of the effect of vitamin D3 on the thermotropic phase behavior of lipids model systems, Biochim. Biophys. Acta, 1240(1995), 125–132.
  • [22] Sahin, I., Cholecalciferol has strong effect on the order and dynamics of DPPC membranes: A combined Fourier transform infrared spectroscopy and differential scanning calorimetry study, Vibrational Spectroscopy, 113(2021), 103207.
  • [23] Severcan, F., Sahin, I., Kazancı, N., Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry, Biochim. Biophys. Acta, 1668(2005), 215–222.
  • [24] Biruss, B., Dietl, R., Valenta, C., The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes, Chem. Phys. Lipids, 148(2007), 84-90.
  • [25] Villalain, J., Arranda, F.J., Gomez-Fernandez, J.C., Calorimetric and infrared spectroscopic studies of the interaction of a-tocopherol and a-tocopheryl acetate with phospholipid vesicles, Eur. J. Biochem., 158(1986), 141-147.
  • [26] Nyholm, T., Nylund, M., Söderholm, A., and Slotte, J. P., Properties of Palmitoyl Phosphatidylcholine, Sphingomyelin, and Dihydrosphingomyelin Bilayer Membranes as Reported by Different Fluorescent Reporter Molecules, Biophys J., 84(2)(2003), 987–997.
  • [27] Niemelä, P.S., Hyvönen, M.T., Vattulainen, I., Influence of chain length and unsaturation on sphingomyelin bilayers, Biophys J., 90(3)(2006), 851-63.
  • [28] Vénien, C., and Le Grimellec, C., Phospholipid asymmetry in renal brush-border membranes, Biochim. Biophys. Acta., 942(1988), 159–168.
  • [29] Sariisik, E., Kocak, M., Kucuk Baloglu, F., Severcan, F., Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes, Biochim. Biophys. Acta Biomembr., 1861(2019), 810–818.
  • [30] Zhang, Y.P., Lewis, R.N., Hodges, R.S., McElhaney, R.N., Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies, Biophys. J., 68(1995), 847–857.
  • [31] Arouri, A., Dathe, M., Blume, A., Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes, Biochim. Biophys. Acta, 1788(2009), 650–659.
  • [32] Riske, K.A., Barroso, R.P., Vequi-Suplicy, C.C., Germano, R., Henriques, V.B., Lamy, M.T., Lipid bilayer pre-transition as the beginning of the melting process, Biochim. Biophys. Acta, 1788(2009), 954–963.
  • [33] de Almeida, R.F.M., Fedorov, A., Prieto, M., Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts, Biophys. J., 85(2003), 2406-2416.
  • [34] Maulik, P.R., Shipley, G.G., N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine, Biochemistry, 35(1996), 8025-8034.
  • [35] Arsova, Z., González-Ramírez, E.J., M.Goñi, F., Tristram-Nagle, S., Nagle, J.F., Phase behavior of palmitoyl and egg sphingomyelin, Chemistry and Physics of Lipids, 213(2018), 102-110.
  • [36] Wrobel, D., Appelhans, D., Signorelli, M., Wiesner, B., Fessas, D., Scheler, U., Voit, B., Maly, J., Interaction study between maltose-modified PPI dendrimers and lipidic model membranes, Biochim. Biophys. Acta Biomembr., 1848(2015), 1490–1501.
  • [37] Sanchez-Bueno, A., Watanabe, S., Maria Jose, S., Saito, T., Studies of confirmation and interaction of the cytoclohexenone and acetyl group of progesterone with liposomes, J. Steroid Biochem. Mol. Biol., 38(1991), 173–179.
  • [38] Custódio, J.A., Almeida, L.M., Madeira, V.M.C., The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes, Biochim. Biophys. Acta Biomembr., 1150(1993), 123–129.
  • [39] Sarpietro, M.G., Accolla, M.L., Cova, A., Prezzavento, O., Castelli, F., Ronsisvalle, S., DSC investigation of the effect of the new sigma ligand PPCC on DMPC lipid membrane, Int. J. Pharm., 469(2014), 88–93.
  • [40] Toyran, N., Severcan, F., Competitive effect of vitamin D2 and Ca2+ on phospholipid model membranes: an FTIR study, Chem. Phys. Lipids, 123(2003), 165–176.
  • [41] Bondar, O.P., Rowe, E.S., Differential scanning calorimetric study of the effect of vitamin D3 on the thermotropic phase behavior of lipids model systems, Biochim. Biophys. Acta, 1240(1995), 125–132.
  • [42] Castelli, F., Gurrieri, S., Raudino, A., Cambria, A., Effect of cholecalcipherol on thermotropic behaviour of phosphatidylethanolamine and its N-methyl derivatives, Chem. Phys. Lipids, 48(1–2)(1988), 69–76.
  • [43] Turker, S., Wassall, S., Stillwell, W., Severcan, F., Convulsant agent pentylenetetrazol does not alter the structural and dynamical properties of dipalmitoylphosphatidylcholine model membranes, J. Pharm. Biomed. Anal., 54(2011), 379-386.
  • [44] Baber, J., Ellena, J.F., Cafiso, D.S., Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy, Biochemistry, 34(1995), 6533-6539.
  • [45] Aleskndrany, A., Sahin, I., The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies, Biochimica et Biophysica Acta (BBA) – Biomembranes, 1862(6)(2020), 183245.
  • [46] Do, T.T.T., Dao, U.P.N., Bui, H.T., Nguyen, T.T., Effect of electrostatic interaction between fluoxetine and lipid CrossMark membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR, Chem. Phys. Lipids, 207(2017), 10–23. [47] Ergun S., Demir, P., Uzbay, T., Severcan, F., Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes, Biochim. Biophys. Acta Biomembr., 1838(2014), 2798–2806.
  • [48] Casal, H.L., Mantsch, H.H., Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy, Biochim. Biophys. Acta, 779(1984), 381-401.
  • [49] Harrison, J.E., Groundwater, P.W., Brain, K.R., Hadgraft, J., Azone® induced fluidity in human stratum corneum. A Fourier transform infrared spectroscopy investigation using the perdeuterated analogue, J. Control. Release, 41(1996), 283-290.
  • [50] Chen, H., Mendelsohn, R., Rerek, M.E., Moore, D.J., Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2, Biochim. Biophys. Acta, 1468(2000), 293-303.
  • [51] Fanani, M.L., Maggio, B., The many faces (and phases) of ceramide and sphingomyelin I - single lipids, Biophys Rev., 9(5)(2017), 589–600.
  • [52] Casal, H.L., Mantsch, H.H., Paltauf, F., Hauser, H., Infrared and 31P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines, Biochim. Biophys. Acta, 919(1987), 275–286.
  • [53] Niemelä, P.S., Hyvönen, M.T., Vattulainen, I., Influence of chain length and unsaturation on sphingomyelin bilayers, Biophys J, 90(3)(2006), 851-63.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İpek Şahin

Erken Görünüm Tarihi 23 Ağustos 2022
Yayımlanma Tarihi 23 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 38 Sayı: 2

Kaynak Göster

APA Şahin, İ. (2022). Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 383-392.
AMA Şahin İ. Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2022;38(2):383-392.
Chicago Şahin, İpek. “Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol With Sphingomyelin Model Membranes”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38, sy. 2 (Ağustos 2022): 383-92.
EndNote Şahin İ (01 Ağustos 2022) Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38 2 383–392.
IEEE İ. Şahin, “Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, ss. 383–392, 2022.
ISNAD Şahin, İpek. “Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol With Sphingomyelin Model Membranes”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38/2 (Ağustos 2022), 383-392.
JAMA Şahin İ. Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38:383–392.
MLA Şahin, İpek. “Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol With Sphingomyelin Model Membranes”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, 2022, ss. 383-92.
Vancouver Şahin İ. Infrared Spectroscopic and Calorimetric Studies of the Interaction of Cholecalciferol with Sphingomyelin Model Membranes. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38(2):383-92.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.