Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 103 - 111, 30.09.2019
https://doi.org/10.35208/ert.450874

Abstract

References

  • [1]. M. Kermiche, S. Djerad, ′′Facilitated transport of copper through bulk liquid membrane containing di-2ethylhexyl phosphoric acid′′, Desalination and Water Treatment Vol. 36, pp. 261-269, 2011. [2]. T. Miyahara, H. Kanzaki, R. Hamadab, S. Kuroiwa, S. Nishiyama, S. Tsuruya, ′′Liquid-phase oxidation of benzene to phenol by CuO-Al2O3 catalysts prepared by co-precipitation method′′, Journal of Molecular Catalysis A: Chemical, Vol. 176, pp. 141–150, 2001.[3]. N. Alane, S. Djerad, L. Tifouti, ′′Acid Leaching of Zinc From ZnO/Al2O3 Catalyst′′, Lebanese Science Journal Vol. 9, pp. 63-74, 2008.[4] I. Boukerche, N. Habbache, N. Alane, S. Djerad, L. Tifouti, ′′Dissolution of Cobalt from CoO/Al2O3 Catalyst with Mineral Acids′′, Industrial Engineering and Chemistry Research Vol. 49, pp. 6514–6520, 2010.[5]. R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, L. Tifouti, ′′Citric acid as an alternative lixiviant for zinc oxide dissolution′′, Hydrometallurgy Vol.134-135, pp.117–123, 2013. [6]. J.J. Eksteen, E.A. Oraby, ′′The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: effect of catalytic ions, sulphide minerals and amino acid type′′, Minerals Engineering Vol. 70, pp. 36-42, 2015.[7]. N. Habbache, S. Djerad, L. Tifouti, ′′Optimization of the operation conditions for NiO dissolution with different leachants′′, Process Engineering Journal Vol.1, pp. 59–67, 2017.[8]. E.A. Oraby, J.J. Eksteen, ′′The leaching of gold, silver and their alloys in alkaline glycine-peroxide solutions and their adsorption on carbon′′, Hydrometallurgy Vol.152, pp. 199-203, 2015.[9]. B.C. Tanda, J.J. Eksteen, E.A. Oraby, ′′An investigation into the leaching behavior of copper oxide minerals in aqueous alkaline glycine solutions′′, Hydrometallurgy Vol. 167, pp. 153-162, 2017.[10]. V.Ya. Yablokov, I.L. Smel’tsova, I.A. Zelyaev, S.V. Mitrofanova, ′′Studies of the rates of thermal decomposition of glycine, alanine and serine′′, Russian Journal of General Chemistry Vol. 79, pp. 1704-1706, 2009.[11]. E.A. Oraby, J.J. Eksteen, ′′The selective leaching of copper from gold-copper concentrate in glycine solutions′′, Hydrometallurgy Vol.150, pp. 14-19, 2014.[12]. D. Feng, J.S.J. Van Deventer, ′′The role of amino acids in the thiosulphate leaching of gold′′, Minerals Engineering Vol. 24, pp. 1022-1024, 2011.[13]. N. Harnby, M.F. Edwards, A.W. Nienow, ′′Mixing in the Process Industries′′, Butterworth-Heinemann 2nd Ed, Oxford 2001.[14]. G.Tati'erson, R.Calabrese, (eds) ′′Industrial Mixing Research Needs′′ AIChE, New York, 1989.[15]. G. Daccord, ′′Dissolutions, evaporations, etching′′, In: Avnir, D. (Ed.), The fractal approach to heterogeneous chemistry. John Willey and Sons, Chichester, 1989.[16]. P.M. Armenante, E.U. Nagamine, J. Susanto, ′′Determination of correlations to predict the minimum agitation speed for complete solid suspension in agitated vessels′′, Canadian Journal of Chemical Engineering Vol.76, pp. 413-419, 1998.[17]. O. Akiti, A. Yeboah, G. Bai, P.M. Armenante, ′′Hydrodynamic effects on mixing and competitive reactions in laboratory reactors′′, Chemical Engineering Science Vol. 60, pp. 2341- 2354, 2005.[18]. S. Aksu, F.M. Doyle, ′′Electrochemestry of copper in aqueous glycine solutions′′ Journal of Electrochemical Society Vol. 148, pp. B51-B57, 2001.[19]. S. Aksu, F.M. Doyle, ′′The role of glycine in the chemical mechanical planarization of copper′′, Journal of Electrochemical Society Vol. 149, pp. G352-G361, 2002.[20]. M. Ammar, Z. Driss, W. Chtourou, M.S. Abid, ′′Effect of the Tank Design on the Flow Pattern Generated with a Pitched Blade Turbine′′, International Journal of Mechanical Application Vol. 2, pp. 12-19, 2012.[21]. S. Karray, Z. Driss, A. Kaffel, H. Kchaou, M.S. Abid, ′′Fluid-structure interaction in a stirred vessel equipped with the Rushton turbine′′, International Journal of Mechanical Application Vol. 2, pp. 129-139, 2012.[22]. J. Baldyga, J.R. Bourne, ′′Turbulent Mixing and Chemical Reactions′′, Wiley, New York. 1999.[23]. J. Aubin, D.F. Fletcher, C. Xuereb, ′′Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme′′, Experimental Thermal and Fluid Science Vol. 28, pp. 431-445, 2004.[24]. J. Kukura, P.C. Arratia, E.S. Szalai, F.J. Muzzio, ′′Engineering tools for understanding hydrodynamics of dissolution tests′′, Drug Development and Industrial Pharmacy Vol. 29, pp. 231-239, 2003.[25]. M. Kamba, Y. Seta, N. Takeda, T. Hamaura, A. Kusai, H. Nakane, K. Nishimura, ′′Measurement of agitation force in dissolution test and mechanical destructive force in disintegration test′′, International Journal of Pharmaceutics Vol. 250, pp. 99-109, 2003.[26]. M. Higuchi, Y. Yoshihashi, K. Tarada, K. Sugano, ′′Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus′′, European Journal of Pharmaceutical Sciences Vol. 65, pp. 74-78, 2014. [27]. H. Ameur, M.D. Bouzit, ′′3D hydrodynamics and shear rates, variability in the United States Pharmacopeia Paddle Dissolution Apparatus′′, International Journal of Pharmaceutics Vol. 452, pp. 42-51, 2013. [28]. A. Bakker, J.B. Fasano, K.J. Myers, ′′Effects of Flow Pattern on the Solids Distribution in a Stirred Tank′′, 8th European Conference on Mixing, Cambridge, U.K. IChemE Symposium Series No. 136, ISBN 0 85295 329 1, pp. 1-8, 1994. [29]. Z. Jaworski, A.W. Nienow, K.N. Dyster, ′′An LDA study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller′′, Canadian Journal of Chemical Engineering Vol. 74, pp. 3-15, 1996.[30]. Levenspiel, O. Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, New York, 1999.

Effect of stirring device on CuO dissolution by glycine

Year 2019, Volume: 2 Issue: 3, 103 - 111, 30.09.2019
https://doi.org/10.35208/ert.450874

Abstract

In this study the leaching of CuO particles by glycine, an environmentally friendly leachant, was investigated under different conditions. It was found that the variation of glycine and NaOH concentrations as well as CuO loading influenced slightly the dissolution of CuO while temperature, the volume of solution and the nature of stirring impacted greatly the dissolution process. Magnetic and mechanical stirring registered inverse effects. In fact, increasing the volume of solution from 105 to 405 mL decreased the dissolution of CuO from 100% to 26.2% registered after 180 min respectively under magnetic stirring, while it increased from 43.5% to 91.7% respectively under the same conditions with mechanical stirring. Thus, the nature of stirring is a crucial parameter that may radically change the dissolution results. The dissolution was found to be controlled by chemical reaction.

References

  • [1]. M. Kermiche, S. Djerad, ′′Facilitated transport of copper through bulk liquid membrane containing di-2ethylhexyl phosphoric acid′′, Desalination and Water Treatment Vol. 36, pp. 261-269, 2011. [2]. T. Miyahara, H. Kanzaki, R. Hamadab, S. Kuroiwa, S. Nishiyama, S. Tsuruya, ′′Liquid-phase oxidation of benzene to phenol by CuO-Al2O3 catalysts prepared by co-precipitation method′′, Journal of Molecular Catalysis A: Chemical, Vol. 176, pp. 141–150, 2001.[3]. N. Alane, S. Djerad, L. Tifouti, ′′Acid Leaching of Zinc From ZnO/Al2O3 Catalyst′′, Lebanese Science Journal Vol. 9, pp. 63-74, 2008.[4] I. Boukerche, N. Habbache, N. Alane, S. Djerad, L. Tifouti, ′′Dissolution of Cobalt from CoO/Al2O3 Catalyst with Mineral Acids′′, Industrial Engineering and Chemistry Research Vol. 49, pp. 6514–6520, 2010.[5]. R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, L. Tifouti, ′′Citric acid as an alternative lixiviant for zinc oxide dissolution′′, Hydrometallurgy Vol.134-135, pp.117–123, 2013. [6]. J.J. Eksteen, E.A. Oraby, ′′The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: effect of catalytic ions, sulphide minerals and amino acid type′′, Minerals Engineering Vol. 70, pp. 36-42, 2015.[7]. N. Habbache, S. Djerad, L. Tifouti, ′′Optimization of the operation conditions for NiO dissolution with different leachants′′, Process Engineering Journal Vol.1, pp. 59–67, 2017.[8]. E.A. Oraby, J.J. Eksteen, ′′The leaching of gold, silver and their alloys in alkaline glycine-peroxide solutions and their adsorption on carbon′′, Hydrometallurgy Vol.152, pp. 199-203, 2015.[9]. B.C. Tanda, J.J. Eksteen, E.A. Oraby, ′′An investigation into the leaching behavior of copper oxide minerals in aqueous alkaline glycine solutions′′, Hydrometallurgy Vol. 167, pp. 153-162, 2017.[10]. V.Ya. Yablokov, I.L. Smel’tsova, I.A. Zelyaev, S.V. Mitrofanova, ′′Studies of the rates of thermal decomposition of glycine, alanine and serine′′, Russian Journal of General Chemistry Vol. 79, pp. 1704-1706, 2009.[11]. E.A. Oraby, J.J. Eksteen, ′′The selective leaching of copper from gold-copper concentrate in glycine solutions′′, Hydrometallurgy Vol.150, pp. 14-19, 2014.[12]. D. Feng, J.S.J. Van Deventer, ′′The role of amino acids in the thiosulphate leaching of gold′′, Minerals Engineering Vol. 24, pp. 1022-1024, 2011.[13]. N. Harnby, M.F. Edwards, A.W. Nienow, ′′Mixing in the Process Industries′′, Butterworth-Heinemann 2nd Ed, Oxford 2001.[14]. G.Tati'erson, R.Calabrese, (eds) ′′Industrial Mixing Research Needs′′ AIChE, New York, 1989.[15]. G. Daccord, ′′Dissolutions, evaporations, etching′′, In: Avnir, D. (Ed.), The fractal approach to heterogeneous chemistry. John Willey and Sons, Chichester, 1989.[16]. P.M. Armenante, E.U. Nagamine, J. Susanto, ′′Determination of correlations to predict the minimum agitation speed for complete solid suspension in agitated vessels′′, Canadian Journal of Chemical Engineering Vol.76, pp. 413-419, 1998.[17]. O. Akiti, A. Yeboah, G. Bai, P.M. Armenante, ′′Hydrodynamic effects on mixing and competitive reactions in laboratory reactors′′, Chemical Engineering Science Vol. 60, pp. 2341- 2354, 2005.[18]. S. Aksu, F.M. Doyle, ′′Electrochemestry of copper in aqueous glycine solutions′′ Journal of Electrochemical Society Vol. 148, pp. B51-B57, 2001.[19]. S. Aksu, F.M. Doyle, ′′The role of glycine in the chemical mechanical planarization of copper′′, Journal of Electrochemical Society Vol. 149, pp. G352-G361, 2002.[20]. M. Ammar, Z. Driss, W. Chtourou, M.S. Abid, ′′Effect of the Tank Design on the Flow Pattern Generated with a Pitched Blade Turbine′′, International Journal of Mechanical Application Vol. 2, pp. 12-19, 2012.[21]. S. Karray, Z. Driss, A. Kaffel, H. Kchaou, M.S. Abid, ′′Fluid-structure interaction in a stirred vessel equipped with the Rushton turbine′′, International Journal of Mechanical Application Vol. 2, pp. 129-139, 2012.[22]. J. Baldyga, J.R. Bourne, ′′Turbulent Mixing and Chemical Reactions′′, Wiley, New York. 1999.[23]. J. Aubin, D.F. Fletcher, C. Xuereb, ′′Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme′′, Experimental Thermal and Fluid Science Vol. 28, pp. 431-445, 2004.[24]. J. Kukura, P.C. Arratia, E.S. Szalai, F.J. Muzzio, ′′Engineering tools for understanding hydrodynamics of dissolution tests′′, Drug Development and Industrial Pharmacy Vol. 29, pp. 231-239, 2003.[25]. M. Kamba, Y. Seta, N. Takeda, T. Hamaura, A. Kusai, H. Nakane, K. Nishimura, ′′Measurement of agitation force in dissolution test and mechanical destructive force in disintegration test′′, International Journal of Pharmaceutics Vol. 250, pp. 99-109, 2003.[26]. M. Higuchi, Y. Yoshihashi, K. Tarada, K. Sugano, ′′Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus′′, European Journal of Pharmaceutical Sciences Vol. 65, pp. 74-78, 2014. [27]. H. Ameur, M.D. Bouzit, ′′3D hydrodynamics and shear rates, variability in the United States Pharmacopeia Paddle Dissolution Apparatus′′, International Journal of Pharmaceutics Vol. 452, pp. 42-51, 2013. [28]. A. Bakker, J.B. Fasano, K.J. Myers, ′′Effects of Flow Pattern on the Solids Distribution in a Stirred Tank′′, 8th European Conference on Mixing, Cambridge, U.K. IChemE Symposium Series No. 136, ISBN 0 85295 329 1, pp. 1-8, 1994. [29]. Z. Jaworski, A.W. Nienow, K.N. Dyster, ′′An LDA study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller′′, Canadian Journal of Chemical Engineering Vol. 74, pp. 3-15, 1996.[30]. Levenspiel, O. Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, New York, 1999.
There are 1 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Nadir Lakhel This is me 0000-0002-0639-7489

Souad Djerad 0000-0001-5767-4573

Publication Date September 30, 2019
Submission Date August 5, 2018
Acceptance Date September 9, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Lakhel, N., & Djerad, S. (2019). Effect of stirring device on CuO dissolution by glycine. Environmental Research and Technology, 2(3), 103-111. https://doi.org/10.35208/ert.450874
AMA Lakhel N, Djerad S. Effect of stirring device on CuO dissolution by glycine. ERT. September 2019;2(3):103-111. doi:10.35208/ert.450874
Chicago Lakhel, Nadir, and Souad Djerad. “Effect of Stirring Device on CuO Dissolution by Glycine”. Environmental Research and Technology 2, no. 3 (September 2019): 103-11. https://doi.org/10.35208/ert.450874.
EndNote Lakhel N, Djerad S (September 1, 2019) Effect of stirring device on CuO dissolution by glycine. Environmental Research and Technology 2 3 103–111.
IEEE N. Lakhel and S. Djerad, “Effect of stirring device on CuO dissolution by glycine”, ERT, vol. 2, no. 3, pp. 103–111, 2019, doi: 10.35208/ert.450874.
ISNAD Lakhel, Nadir - Djerad, Souad. “Effect of Stirring Device on CuO Dissolution by Glycine”. Environmental Research and Technology 2/3 (September 2019), 103-111. https://doi.org/10.35208/ert.450874.
JAMA Lakhel N, Djerad S. Effect of stirring device on CuO dissolution by glycine. ERT. 2019;2:103–111.
MLA Lakhel, Nadir and Souad Djerad. “Effect of Stirring Device on CuO Dissolution by Glycine”. Environmental Research and Technology, vol. 2, no. 3, 2019, pp. 103-11, doi:10.35208/ert.450874.
Vancouver Lakhel N, Djerad S. Effect of stirring device on CuO dissolution by glycine. ERT. 2019;2(3):103-11.