Research Article
BibTex RIS Cite

The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation

Year 2019, Volume: 2 Issue: 4, 211 - 221, 31.12.2019
https://doi.org/10.35208/ert.597731

Abstract

It is shown how the
deactivation of a diesel SCR (Selective Catalytic Reduction) catalyst by
compounds in the exhaust gases influences the kinetics of the catalyst. Results
are given for the fresh (4.56 % V
2O5/TiO2)
catalyst and the ones used in the rig for 890 h and 2299 h. The reactions of
700 ppm NH
3 and 2 % O2 in Helium yielded N2, N2O,
and NO at increasing temperatures. Simulations were performed with COMSOL
Multiphysics using a 3-D model of the catalyst system. The experimental values
of the products N
2, N2O, and NO were very nicely fitted
by the kinetic model used. All three ammonia oxidation reaction rates were of
the first order in the concentration of NH
3. A preliminary study
using non-isothermal conditions showed the maximal temperature increase to be
0.15 K. Thus, further simulations were done with an isothermal model. The
deactivation reduces the pre-exponential factors and the activation energies
for the formation of N
2, N2O, and NO. The formation of N2
is not substantially influenced by deactivation. The changes in the kinetics of
the catalytic NH
3 oxidation by deactivation is reported for the
first time in the present study.

Supporting Institution

Department of Chemical Engineering

References

  • [1] Konstandopoulos A, Zarvalis D, Chasapidis L, Deloglou L, Vlachos N, Kotbra A, Anderson G (2017) SAE Int. J. Engines 10 (4): 1653.
  • [2] Jung H, Kittelson DB, Zachariah MR, (2003) SAE Technical Paper 2003-01-3179.
  • [3] Odenbrand CUI, Catalysis Letters, 2019, DOI 10.1007/s10562-019-02892-7
  • [4] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53 (4): 657.
  • [5] Ozkan US, Cai Y, Kuthekar MW, Zhang L (1993) J. Catal. 142:182.
  • [6] Ozkan US, Cai Y, Kuthekar MW (1994) J. Catal. 149:375.
  • [7] Duffy BL, Curry-Hyde HE, Cant NW, Nelson PF (1994) J. Phys. Chem. 98: 7153.
  • [8] Efstathiou AM, Fliatoura K (1995) Appl. Catal. B: Environ. 6:35.
  • [9] Yates M, Martín JA, Martín-Luengo MA, Suárez S, Blanco J (2005) Catal. Today 107-108: 120.
  • [10] Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweler W (2006) Catal. Today 113: 208.
  • [11] Lietti L, Nova I, Forzatti P (2000) Topics in Catalysis 11/12:111.
  • [12] Odenbrand CUI (2017) Top. Catal. 60: 1317.
  • [13] Odenbrand CUI (2018) Appl. Catal B: Environ.234: 365.
  • [14] Roduit B, Wokaun A, Baiker A (1998) Ind. Eng. Chem. Res. 37: 4577.
  • [15] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53(4): 657.
  • [16] Chen C-T, Tan W-L (2012) J. of the Taiwan Institute of Chemical Engineers 43:409.
  • [17] Nahavandi M (2015) Brazilian J. of Chem. Eng. 32(4): 875.
  • [18] Yun BK, Kim MY (2013) Appl. Thermal Engineering 50:152.
  • [19] Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl. Catal. B: Environ. 111-112: 445.
  • [20] http://www.engineersedge.com/heat_transfer/convective_heat_transfer_ coefficients 13378.
  • [21] Brandin JGM, Odenbrand CUI (2017) Topic. Catal. 60: 1306.
  • [22] Brandin JGM, Odenbrand CUI (2018) Catal. Lett. 148(1): 312.
  • [23] Vaimakis TC, Pomonis PJ, Sdoukos AT (1990) Thermochimica Acta 168:103.
  • [24] Metkar PS, Balakotaiah V, Harold MP (2011) Chem. Eng. Sci. 66:5192.
  • [25] Salehi S, Moghaddam MA, Sahebjamee N (2016) International Journal of Engineering 29(9):1183.
  • [26] Om J, Ji P, Wu W (2015) Asia-Pacific Energy Equipment Engineering Research Conference AP3ER 2015:56.
  • [27] Schaub G, Unruh D, Wang J, Turek T (2003) Chemical Engineering and Processing 42:365.
  • [28] Millo F, Rafigh M, Fino D, Micelli P (2017) Fuel 198:183.
Year 2019, Volume: 2 Issue: 4, 211 - 221, 31.12.2019
https://doi.org/10.35208/ert.597731

Abstract

References

  • [1] Konstandopoulos A, Zarvalis D, Chasapidis L, Deloglou L, Vlachos N, Kotbra A, Anderson G (2017) SAE Int. J. Engines 10 (4): 1653.
  • [2] Jung H, Kittelson DB, Zachariah MR, (2003) SAE Technical Paper 2003-01-3179.
  • [3] Odenbrand CUI, Catalysis Letters, 2019, DOI 10.1007/s10562-019-02892-7
  • [4] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53 (4): 657.
  • [5] Ozkan US, Cai Y, Kuthekar MW, Zhang L (1993) J. Catal. 142:182.
  • [6] Ozkan US, Cai Y, Kuthekar MW (1994) J. Catal. 149:375.
  • [7] Duffy BL, Curry-Hyde HE, Cant NW, Nelson PF (1994) J. Phys. Chem. 98: 7153.
  • [8] Efstathiou AM, Fliatoura K (1995) Appl. Catal. B: Environ. 6:35.
  • [9] Yates M, Martín JA, Martín-Luengo MA, Suárez S, Blanco J (2005) Catal. Today 107-108: 120.
  • [10] Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweler W (2006) Catal. Today 113: 208.
  • [11] Lietti L, Nova I, Forzatti P (2000) Topics in Catalysis 11/12:111.
  • [12] Odenbrand CUI (2017) Top. Catal. 60: 1317.
  • [13] Odenbrand CUI (2018) Appl. Catal B: Environ.234: 365.
  • [14] Roduit B, Wokaun A, Baiker A (1998) Ind. Eng. Chem. Res. 37: 4577.
  • [15] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53(4): 657.
  • [16] Chen C-T, Tan W-L (2012) J. of the Taiwan Institute of Chemical Engineers 43:409.
  • [17] Nahavandi M (2015) Brazilian J. of Chem. Eng. 32(4): 875.
  • [18] Yun BK, Kim MY (2013) Appl. Thermal Engineering 50:152.
  • [19] Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl. Catal. B: Environ. 111-112: 445.
  • [20] http://www.engineersedge.com/heat_transfer/convective_heat_transfer_ coefficients 13378.
  • [21] Brandin JGM, Odenbrand CUI (2017) Topic. Catal. 60: 1306.
  • [22] Brandin JGM, Odenbrand CUI (2018) Catal. Lett. 148(1): 312.
  • [23] Vaimakis TC, Pomonis PJ, Sdoukos AT (1990) Thermochimica Acta 168:103.
  • [24] Metkar PS, Balakotaiah V, Harold MP (2011) Chem. Eng. Sci. 66:5192.
  • [25] Salehi S, Moghaddam MA, Sahebjamee N (2016) International Journal of Engineering 29(9):1183.
  • [26] Om J, Ji P, Wu W (2015) Asia-Pacific Energy Equipment Engineering Research Conference AP3ER 2015:56.
  • [27] Schaub G, Unruh D, Wang J, Turek T (2003) Chemical Engineering and Processing 42:365.
  • [28] Millo F, Rafigh M, Fino D, Micelli P (2017) Fuel 198:183.
There are 28 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

İngemar Odenbrand 0000-0002-4956-5681

Publication Date December 31, 2019
Submission Date July 29, 2019
Acceptance Date December 12, 2019
Published in Issue Year 2019 Volume: 2 Issue: 4

Cite

APA Odenbrand, İ. (2019). The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. Environmental Research and Technology, 2(4), 211-221. https://doi.org/10.35208/ert.597731
AMA Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. December 2019;2(4):211-221. doi:10.35208/ert.597731
Chicago Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology 2, no. 4 (December 2019): 211-21. https://doi.org/10.35208/ert.597731.
EndNote Odenbrand İ (December 1, 2019) The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. Environmental Research and Technology 2 4 211–221.
IEEE İ. Odenbrand, “The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation”, ERT, vol. 2, no. 4, pp. 211–221, 2019, doi: 10.35208/ert.597731.
ISNAD Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology 2/4 (December 2019), 211-221. https://doi.org/10.35208/ert.597731.
JAMA Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. 2019;2:211–221.
MLA Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology, vol. 2, no. 4, 2019, pp. 211-2, doi:10.35208/ert.597731.
Vancouver Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. 2019;2(4):211-2.