Research Article
BibTex RIS Cite

Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis

Year 2020, Volume: 3 Issue: 3, 119 - 128, 30.09.2020
https://doi.org/10.35208/ert.774770

Abstract

Herein, landfill leachate containing high amount of organic matter, which is quite difficult to treat, was first treated using the new submerged membrane electro-bioreactor (SMEBR) system. Aluminum (Al) electrode was used for the treatment of leachate in the SMEBR and Al accumulation was detected. This study aims to examine Al accumulation in the treatment of leachate with high organic content in the SMEBR system. The Al values obtained were plotted on a graph using MS Excel, and Mann–Whitney U test was used to determine whether there is a statistical difference between the observed Al values. Also, correlations between Al accumulations and conductivity and TOC in SMEBR and SMBR were evaluated. Resultantly, it was found that relationship between Al and conductivity is very weak, correlation between Al and TOC% is a weak-moderate, the Al accumulation in the SEMBR has a linear relationship with time and there is a very strong correlation between the two variables (R2= 0.7591). Its correlation with time in the SMBR is moderate (R2= 0.3316). MS Excel 2016 and Minitab 16.0 programs were utilized in the statistical analyses.

Supporting Institution

TUBİTAK

Project Number

115Y038

References

  • [1]. S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin, “Landfill leachate treatment: Review and opportunity,” J. Hazard. Mater., vol. 150, no. 3, pp. 468–493, 2008.
  • [2]. D. Kulikowska, E. Klimiuk, E, “The Effect of Landfill Age on Municipal Leachate Composition”, Bioresource. Technol., 99 (13): 5981-5985, 2008.
  • [3]. Tatsi, A. A., Zouboulis, A.I., (2002). "A Field İnvestigation of The Quantity and Quality of Leachate from a Municipal Solid Waste Landfill in a Mediterranean Climate (Thessaloniki, Greece) ", Adv. Environ. Res., 6 (3): 207-219.
  • [4]. F. N. Ahmed and C. Q. Lan, “Treatment of landfill leachate using membrane bioreactors: A review,” Desalination, vol. 287, pp. 41–54, 2012.
  • [5]. Ü. T. Ün, S. Uğur, A. S. Koparal, Ü. B. Öğütveren, “Electrocoagulation of olive mill wastewaters”, Separation and Purification Technology, 52(1), 136-141, 2006.
  • [6]. N. Adhoum, L. Monser, “Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation”, Chemical Engineering and Processing: Process Intensification, 43(10), 1281-1287, 2004.
  • [7]. M. Agustin, W. Sengpracha, W. Phutdhawong, “Electrocoagulation of palm oil mill effluent”, International Journal of Environmental Research and Public Health, 5(3), 177-180, 2008.
  • [8]. C. Barrera-Díaz, G. Roa-Morales, L. Ávila-Córdoba, T. Pavón-Silva, B. Bilyeu, “Electrochemical treatment applied to food-processing industrial wastewater”, Industrial & engineering chemistry research, 45(1), 34-38, 2006.
  • [9]. C. T. Wang, W. L. Chou, Y. M. Kuo, “Removal of COD from laundry wastewater by electrocoagulation/electroflotation”, Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [10]. M. Murugananthan, G. B. Raju, S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation”, Separation and Purification Technology, 40(1), 69-75, 2004.
  • [11]. S. Zodi, J. N. Louvet, C. Michon, O. Potier, M. N. Pons, F. Lapicque, J. P. Leclerc, “Electrocoagulation as a tertiary treatment for paper mill wastewater: Removal of non-biodegradable organic pollution and arsenic”, Separation and purification, 81(1), 62-68, 2011.
  • [12]. A. K. Golder, A. N. Samanta, S. Ray, “Removal of trivalent chromium by electrocoagulation”, Separation and Purification Technology, 53(1), 33-41, 2007.
  • [13]. C. L. Lai, K. S. Lin, “Sludge conditioning characteristics of copper chemical mechanical polishing wastewaters treated by electrocoagulation”, Journal of hazardous materials, 136(2), 183-187, 2008.
  • [14]. S. Hasan, “Design and performance of a pilot submerged membrane electro-bioreactor (SMEBR) for wastewater treatment.” Concordia University, 2012.
  • [15]. V. Suganthi, M. Mahalakshmi, N. Balasubramanian, “Development of hybrid membrane bioreactor for tannery effluent treatment”, Desalination, 309: 231-236, 2013.
  • [16]. S. W. Hasan, M. Elektorowicz, and J. A. Oleszkiewicz, “Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater,” Chemosphere, vol. 97, pp. 71–77, 2014.
  • [17]. M. Hosseinzadeh, G. N. Bidhendi, A. Torabian, N. Mehrdadi, and M. Pourabdullah, “A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation,” Bioresour. Technol., vol. 192, pp. 177–184, 2015.
  • [18]. J. P. Chen, C. Z. Yang, J. H. Zhou, X. Y. Wang, X.Y., “Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor,” Chemical Engineering Journal, 128: 177-180, 2007.
  • [19]. K. Akamatsu, Y. Yoshida, T. Suzaki, Y. Sakai, H. Nagamoto, and S. I. Nakao, “Development of a membrane-carbon cloth assembly for submerged membrane bioreactors to apply an intermittent electric field for fouling suppression,” Sep. Purif. Technol., vol. 88, pp. 202–207, 2012.
  • [20]. L. Liu, J. Liu, B. Gao, and F. Yang, “Minute electric field reduced membrane fouling and improved performance of membrane bioreactor,” Sep. Purif. Technol., vol. 86, pp. 106–112, 2012.
  • [21]. S. Ibeid, M. Elektorowicz, and J. A. Oleszkiewicz, “Novel electrokinetic approach reduces membrane fouling,” Water Res., vol. 47, no. 16, pp. 6358–6366, 2013.
  • [22]. S. Ibeid, M. Elektorowicz, and J. A. Oleszkiewicz, “Electro-conditioning of activated sludge in a membrane electro-bioreactor for improved dewatering and reduced membrane fouling,” J. Memb. Sci., vol. 494, pp. 136–142, 2015.
  • [23]. K. Bani-Melhem and M. Elektorowicz, “Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction,” J. Memb. Sci., vol. 379, no. 1–2, pp. 434–439, 2011.
  • [24]. G. K. Akkaya, E. Sekman, S. Top, E. Sagir, M. S. Bilgili, and S. Y. Guvenc, “Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life,” Environ. Sci. Pollut. Res., vol. 24, no. 11, 2017.
  • [25]. G. K. Akkaya, M. S. Bilgili, “Evaluating the Performance of an Electro-Membrane Bioreactor in Treatment of Young Leachate.” Journal of Environmental Chemical Engineering, 104017, 2020.
  • [26]. M. Kobya, H. Hiz, E. Senturk, C. Aydiner, and E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation,” Desalination, vol. 190, no. 1–3, pp. 201–211, 2006.
  • [27]. F. Ilhan, U. Kurt, O. Apaydin, M. T. Gonullu, “Treatment of leachate by electrocoagulation using aluminum and iron electrodes,” Journal of Hazardous Materials, 154(1-3), 381-389, 2008.
  • [28]. C. T. Wang, W. T. Chou, Y. M. Kuo, “Removal of COD from laundry wastewater by electrocoagulation/electroflotation,” Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [29]. M. Y. Mollah, P. Morkovsky, J. A. Gomes, M. Kesmez, J. Parga, D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, 114: 199-210, 2004.
  • [30]. Ö. Apaydin, U. Kurt, M. T. Gonullu, “An investigation on the treatment of tannery wastewater by electrocoagulation,” Global NEST Journal, 11(4), 546-555, 2009.
  • [31]. Y. Feng, X. Li, T. Song, Y. Yu, J. Qi, “Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF),” Bioresource Technology, 243, 667-675, 2017.
  • [32]. S. Paris, G. Lind, H. Lemmer, P. A. Wilderer, “Dosing aluminum chloride to control Microthrix parvicella,” Acta Hydrochimica et Hydrobiologica, 33(3), 247-254, 2005.
  • [33]. E. J. Lees, B. Noble, R. Hewitt, S. A. Parsons, “The impact of residual coagulant on downstream treatment processes,” Environmental technology, 22(1), 113-122, 2001.
  • [34]. S. Alimoradi, R. Faraj, A. Torabian, “Effects of residual aluminum on hybrid membrane bioreactor (Coagulation-MBR) performance, treating dairy wastewater,” Chemical Engineering and Processing-Process Intensification, 133, 320-324, 2018.
  • [35]. T. Okuda, W. Nishijima, M. Sugimoto, N. Saka, S. Nakai, K. Tanabe, M. Okada, “Removal of coagulant aluminum from water treatment residuals by acid,” Water research, 60, 75-81, 2014.
  • [36]. J. Keeley, P. Jarvis, A. D. Smith, S. J. Judd, “Coagulant recovery and reuse for drinking water treatment,” Water research, 88, 502-509, 2016.
  • [37]. A. Hovsepyan, J. C. J. Bonzongo, “Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation,” Journal of Hazardous Materials, 164(1), 73-80, 2009.
  • [38]. Y. F. Zhou, R. J. Haynes, “Removal of Pb (II), Cr (III) and Cr (VI) from aqueous solutions using alum-derived water treatment sludge,” Water, Air, & Soil Pollution, 215(1-4), 631-643, 2011.
  • [39]. W. Chu, “Lead metal removal by recycled alum sludge,” Water Research, 33(13), 3019-3025, 1999.
  • [40]. S. N. I. Ngatenah, S. R. M. Kutty, M. H. Isa, “Optimization of heavy metal removalfrom aqueous solution using groundwater treatment plant sludge (GWTPS),” In:International Conference on Environment (ICENV 2010), 2010.
  • [41]. P. G. Owen, “Water treatment works’ sludge management,” Water and Environment Journal, 16(4), 282-285, 2002.
  • [42]. M. Moodley, J. C. Hughes, “The effects of a polyacrylamide-derived watertreatment residue on the hydraulic conductivity, water retention andevaporation of four contrasting South African soils and implications for land disposal,” In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa, 2005.
  • [43]. L. V. Kochian, O. A. Hoekenga, M. A. Pineros, “How do crop plants tolerate acid soils? - Mechanisms of Aluminum tolerance and phosphorous efficiency,” Annu. Rev. Plant Biol. 55, 459−493, 2004.
  • [44]. http://www.ccmaknowledgebase.vic.gov.au/brown_book/21_Aluminium.htm, 19 Haziran 2019.
  • [45]. S. K. Panda, F. Baluška, H. Matsumoto, “Aluminum stress signaling in plants,” Plant Signaling & Behavior, 4(7), 592-597, 2009.
  • [46]. N. Adhoum, L. Monser, “Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation,” Chemical Engineering and Processing: Process Intensification, 43(10), 1281-1287, 2004.
Year 2020, Volume: 3 Issue: 3, 119 - 128, 30.09.2020
https://doi.org/10.35208/ert.774770

Abstract

Project Number

115Y038

References

  • [1]. S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin, “Landfill leachate treatment: Review and opportunity,” J. Hazard. Mater., vol. 150, no. 3, pp. 468–493, 2008.
  • [2]. D. Kulikowska, E. Klimiuk, E, “The Effect of Landfill Age on Municipal Leachate Composition”, Bioresource. Technol., 99 (13): 5981-5985, 2008.
  • [3]. Tatsi, A. A., Zouboulis, A.I., (2002). "A Field İnvestigation of The Quantity and Quality of Leachate from a Municipal Solid Waste Landfill in a Mediterranean Climate (Thessaloniki, Greece) ", Adv. Environ. Res., 6 (3): 207-219.
  • [4]. F. N. Ahmed and C. Q. Lan, “Treatment of landfill leachate using membrane bioreactors: A review,” Desalination, vol. 287, pp. 41–54, 2012.
  • [5]. Ü. T. Ün, S. Uğur, A. S. Koparal, Ü. B. Öğütveren, “Electrocoagulation of olive mill wastewaters”, Separation and Purification Technology, 52(1), 136-141, 2006.
  • [6]. N. Adhoum, L. Monser, “Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation”, Chemical Engineering and Processing: Process Intensification, 43(10), 1281-1287, 2004.
  • [7]. M. Agustin, W. Sengpracha, W. Phutdhawong, “Electrocoagulation of palm oil mill effluent”, International Journal of Environmental Research and Public Health, 5(3), 177-180, 2008.
  • [8]. C. Barrera-Díaz, G. Roa-Morales, L. Ávila-Córdoba, T. Pavón-Silva, B. Bilyeu, “Electrochemical treatment applied to food-processing industrial wastewater”, Industrial & engineering chemistry research, 45(1), 34-38, 2006.
  • [9]. C. T. Wang, W. L. Chou, Y. M. Kuo, “Removal of COD from laundry wastewater by electrocoagulation/electroflotation”, Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [10]. M. Murugananthan, G. B. Raju, S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation”, Separation and Purification Technology, 40(1), 69-75, 2004.
  • [11]. S. Zodi, J. N. Louvet, C. Michon, O. Potier, M. N. Pons, F. Lapicque, J. P. Leclerc, “Electrocoagulation as a tertiary treatment for paper mill wastewater: Removal of non-biodegradable organic pollution and arsenic”, Separation and purification, 81(1), 62-68, 2011.
  • [12]. A. K. Golder, A. N. Samanta, S. Ray, “Removal of trivalent chromium by electrocoagulation”, Separation and Purification Technology, 53(1), 33-41, 2007.
  • [13]. C. L. Lai, K. S. Lin, “Sludge conditioning characteristics of copper chemical mechanical polishing wastewaters treated by electrocoagulation”, Journal of hazardous materials, 136(2), 183-187, 2008.
  • [14]. S. Hasan, “Design and performance of a pilot submerged membrane electro-bioreactor (SMEBR) for wastewater treatment.” Concordia University, 2012.
  • [15]. V. Suganthi, M. Mahalakshmi, N. Balasubramanian, “Development of hybrid membrane bioreactor for tannery effluent treatment”, Desalination, 309: 231-236, 2013.
  • [16]. S. W. Hasan, M. Elektorowicz, and J. A. Oleszkiewicz, “Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater,” Chemosphere, vol. 97, pp. 71–77, 2014.
  • [17]. M. Hosseinzadeh, G. N. Bidhendi, A. Torabian, N. Mehrdadi, and M. Pourabdullah, “A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation,” Bioresour. Technol., vol. 192, pp. 177–184, 2015.
  • [18]. J. P. Chen, C. Z. Yang, J. H. Zhou, X. Y. Wang, X.Y., “Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor,” Chemical Engineering Journal, 128: 177-180, 2007.
  • [19]. K. Akamatsu, Y. Yoshida, T. Suzaki, Y. Sakai, H. Nagamoto, and S. I. Nakao, “Development of a membrane-carbon cloth assembly for submerged membrane bioreactors to apply an intermittent electric field for fouling suppression,” Sep. Purif. Technol., vol. 88, pp. 202–207, 2012.
  • [20]. L. Liu, J. Liu, B. Gao, and F. Yang, “Minute electric field reduced membrane fouling and improved performance of membrane bioreactor,” Sep. Purif. Technol., vol. 86, pp. 106–112, 2012.
  • [21]. S. Ibeid, M. Elektorowicz, and J. A. Oleszkiewicz, “Novel electrokinetic approach reduces membrane fouling,” Water Res., vol. 47, no. 16, pp. 6358–6366, 2013.
  • [22]. S. Ibeid, M. Elektorowicz, and J. A. Oleszkiewicz, “Electro-conditioning of activated sludge in a membrane electro-bioreactor for improved dewatering and reduced membrane fouling,” J. Memb. Sci., vol. 494, pp. 136–142, 2015.
  • [23]. K. Bani-Melhem and M. Elektorowicz, “Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction,” J. Memb. Sci., vol. 379, no. 1–2, pp. 434–439, 2011.
  • [24]. G. K. Akkaya, E. Sekman, S. Top, E. Sagir, M. S. Bilgili, and S. Y. Guvenc, “Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life,” Environ. Sci. Pollut. Res., vol. 24, no. 11, 2017.
  • [25]. G. K. Akkaya, M. S. Bilgili, “Evaluating the Performance of an Electro-Membrane Bioreactor in Treatment of Young Leachate.” Journal of Environmental Chemical Engineering, 104017, 2020.
  • [26]. M. Kobya, H. Hiz, E. Senturk, C. Aydiner, and E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation,” Desalination, vol. 190, no. 1–3, pp. 201–211, 2006.
  • [27]. F. Ilhan, U. Kurt, O. Apaydin, M. T. Gonullu, “Treatment of leachate by electrocoagulation using aluminum and iron electrodes,” Journal of Hazardous Materials, 154(1-3), 381-389, 2008.
  • [28]. C. T. Wang, W. T. Chou, Y. M. Kuo, “Removal of COD from laundry wastewater by electrocoagulation/electroflotation,” Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [29]. M. Y. Mollah, P. Morkovsky, J. A. Gomes, M. Kesmez, J. Parga, D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, 114: 199-210, 2004.
  • [30]. Ö. Apaydin, U. Kurt, M. T. Gonullu, “An investigation on the treatment of tannery wastewater by electrocoagulation,” Global NEST Journal, 11(4), 546-555, 2009.
  • [31]. Y. Feng, X. Li, T. Song, Y. Yu, J. Qi, “Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF),” Bioresource Technology, 243, 667-675, 2017.
  • [32]. S. Paris, G. Lind, H. Lemmer, P. A. Wilderer, “Dosing aluminum chloride to control Microthrix parvicella,” Acta Hydrochimica et Hydrobiologica, 33(3), 247-254, 2005.
  • [33]. E. J. Lees, B. Noble, R. Hewitt, S. A. Parsons, “The impact of residual coagulant on downstream treatment processes,” Environmental technology, 22(1), 113-122, 2001.
  • [34]. S. Alimoradi, R. Faraj, A. Torabian, “Effects of residual aluminum on hybrid membrane bioreactor (Coagulation-MBR) performance, treating dairy wastewater,” Chemical Engineering and Processing-Process Intensification, 133, 320-324, 2018.
  • [35]. T. Okuda, W. Nishijima, M. Sugimoto, N. Saka, S. Nakai, K. Tanabe, M. Okada, “Removal of coagulant aluminum from water treatment residuals by acid,” Water research, 60, 75-81, 2014.
  • [36]. J. Keeley, P. Jarvis, A. D. Smith, S. J. Judd, “Coagulant recovery and reuse for drinking water treatment,” Water research, 88, 502-509, 2016.
  • [37]. A. Hovsepyan, J. C. J. Bonzongo, “Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation,” Journal of Hazardous Materials, 164(1), 73-80, 2009.
  • [38]. Y. F. Zhou, R. J. Haynes, “Removal of Pb (II), Cr (III) and Cr (VI) from aqueous solutions using alum-derived water treatment sludge,” Water, Air, & Soil Pollution, 215(1-4), 631-643, 2011.
  • [39]. W. Chu, “Lead metal removal by recycled alum sludge,” Water Research, 33(13), 3019-3025, 1999.
  • [40]. S. N. I. Ngatenah, S. R. M. Kutty, M. H. Isa, “Optimization of heavy metal removalfrom aqueous solution using groundwater treatment plant sludge (GWTPS),” In:International Conference on Environment (ICENV 2010), 2010.
  • [41]. P. G. Owen, “Water treatment works’ sludge management,” Water and Environment Journal, 16(4), 282-285, 2002.
  • [42]. M. Moodley, J. C. Hughes, “The effects of a polyacrylamide-derived watertreatment residue on the hydraulic conductivity, water retention andevaporation of four contrasting South African soils and implications for land disposal,” In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa, 2005.
  • [43]. L. V. Kochian, O. A. Hoekenga, M. A. Pineros, “How do crop plants tolerate acid soils? - Mechanisms of Aluminum tolerance and phosphorous efficiency,” Annu. Rev. Plant Biol. 55, 459−493, 2004.
  • [44]. http://www.ccmaknowledgebase.vic.gov.au/brown_book/21_Aluminium.htm, 19 Haziran 2019.
  • [45]. S. K. Panda, F. Baluška, H. Matsumoto, “Aluminum stress signaling in plants,” Plant Signaling & Behavior, 4(7), 592-597, 2009.
  • [46]. N. Adhoum, L. Monser, “Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation,” Chemical Engineering and Processing: Process Intensification, 43(10), 1281-1287, 2004.
There are 46 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Gulizar Kurtoglu Akkaya 0000-0003-4779-0428

Nur Ayvaz-cavdaroglu 0000-0003-1240-1357

Mehmet Sinan Bilgili 0000-0002-5547-1841

Project Number 115Y038
Publication Date September 30, 2020
Submission Date July 28, 2020
Acceptance Date September 17, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Kurtoglu Akkaya, G., Ayvaz-cavdaroglu, N., & Bilgili, M. S. (2020). Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis. Environmental Research and Technology, 3(3), 119-128. https://doi.org/10.35208/ert.774770
AMA Kurtoglu Akkaya G, Ayvaz-cavdaroglu N, Bilgili MS. Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis. ERT. September 2020;3(3):119-128. doi:10.35208/ert.774770
Chicago Kurtoglu Akkaya, Gulizar, Nur Ayvaz-cavdaroglu, and Mehmet Sinan Bilgili. “Aluminum Accumulation in Treatment Using Submerged Membrane Electro-Bioreactor of Young Landfill Leachate: Statistical Analysis”. Environmental Research and Technology 3, no. 3 (September 2020): 119-28. https://doi.org/10.35208/ert.774770.
EndNote Kurtoglu Akkaya G, Ayvaz-cavdaroglu N, Bilgili MS (September 1, 2020) Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis. Environmental Research and Technology 3 3 119–128.
IEEE G. Kurtoglu Akkaya, N. Ayvaz-cavdaroglu, and M. S. Bilgili, “Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis”, ERT, vol. 3, no. 3, pp. 119–128, 2020, doi: 10.35208/ert.774770.
ISNAD Kurtoglu Akkaya, Gulizar et al. “Aluminum Accumulation in Treatment Using Submerged Membrane Electro-Bioreactor of Young Landfill Leachate: Statistical Analysis”. Environmental Research and Technology 3/3 (September 2020), 119-128. https://doi.org/10.35208/ert.774770.
JAMA Kurtoglu Akkaya G, Ayvaz-cavdaroglu N, Bilgili MS. Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis. ERT. 2020;3:119–128.
MLA Kurtoglu Akkaya, Gulizar et al. “Aluminum Accumulation in Treatment Using Submerged Membrane Electro-Bioreactor of Young Landfill Leachate: Statistical Analysis”. Environmental Research and Technology, vol. 3, no. 3, 2020, pp. 119-28, doi:10.35208/ert.774770.
Vancouver Kurtoglu Akkaya G, Ayvaz-cavdaroglu N, Bilgili MS. Aluminum accumulation in treatment using submerged membrane electro-bioreactor of young landfill leachate: Statistical analysis. ERT. 2020;3(3):119-28.