Conference Paper
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 3, 284 - 292, 30.09.2021
https://doi.org/10.35208/ert.916126

Abstract

References

  • [1]. (2021) The Embrapa Suínos e Aves website. [Online]. Available: https://www.embrapa.br/suinos-e-aves/cias/estatisticas. Accessed 9th Apr 2021.
  • [2]. A. T. Matos and M. P. Matos, Disposição de águas residuárias no solo e em sistemas alagados construídos, 1st ed., Viçosa, Minas Gerais, Brazil: Editora UFV, 2017.
  • [3]. D. Nagarajan, A. Kusmayadi, H.-W. Yen, C.-D. Dong, D.-J. Lee, and J.-S. Chang, “Current advances in biological swine wastewater treatment using microalgae-based processes”, Bioresource Technology, vol. 289, p. 121718, out. 2019, doi: 10.1016/j.biortech.2019.121718.
  • [4]. C. A. de L. Chernicharo, Anaerobic reactors, ser. Biological Wastewater Treatment Series. Belo Horizonte, Minas Gerais, Brazil: IWA publishing, 2007, vol. 4.
  • [5]. L. F. Calza, C. B. Lima, C. E. C. Nogueira, J. A. C. Siqueira and R. F. Santos, “Avaliação dos custos de implantação de biodigestores e da energia produzida pelo biogás". Agricultural Engineering, vol. 35, pp. 990-997, Nov./Dec. 2015.
  • [6]. A. Kunz, R. L. R. Steinmetz and A. C. do Amaral, Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato, 1st ed., Concórdia, Santa Catarina, Brazil: Embrapa Suínos e Aves, 2019.
  • [7]. M. N. Kınyua, J. Zhang, F. Camacho-Céspedes, A. Tejada-Martinez and S. J. Ergas, “Use of physical and biological process models to understand the performance of tubular anaerobic digesters,”Biochemical Engineering Journal”, vol. 107, pp. 35–44, Dec. 2015.
  • [8]. A. C. L. de Oliveira, R. S. Milagres, W. A. Orlando Junior and N. S. Renato, “Evaluation of Brazilian potential for generating electricity through animal manure and sewage,” Biomass and Bioenergy, vol. 139, pp. 105654, Jul. 2020.
  • [9]. I. F. S. dos Santos, N. D. B. Vieira, L. G. B. de Nóbrega, R. M. Barros and G. L. Tiago Filho, “Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement,” Resources, Conservation and Recycling, vol. 131, pp. 54–63, Dec. 2017.
  • [10]. (2021) The Ministério do Meio Ambiente website. [Online]. Available: https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris. Accessed 9th Apr 2021
  • [11]. L. R. A. Ferreira, R. B. Otto, F. P. Silva, S. N. M. de Souza, S. S. de Souza and O. H. Ando Júnior, “Review of the energy potential of the residual biomass for the distributed generation in Brazil,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 440–455, Jun. 2018.
  • [12]. C. F. Souza, J. de Lucas Júnior, and W. P. M. Ferreira, “Biodigestão anaeróbia de dejetos de suínos sob efeito de três temperaturas e dois níveis de agitação do substrato: considerações sobre a partida,” Engenharia Agrícola, vol. 25, pp. 530-539, May/Aug. 2005.
  • [13]. F. Dong and J. Lu, “Using solar energy to enhance biogas production from livestock residue e A case study of the Tongren biogas engineering pig farm in South China,” Energy, vol. 57 pp. 759-765, 2013.
  • [14]. A. Feiden, J. Reichl, J. Schwab and V. Schwab, “Avaliação da eficiência de um biodigestor tubular na produção de biogás a partir de águas residuárias de suinocultura,” in Proc. 5th Encontro de Energia no Meio Rural e Geração Distribuída, 2004.
  • [15]. P. N. Vaz, “Simulação de biodigestor de fluxo tubular com e sem sistemas de recirculação e aquecimento,” M. Eng. Thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil, Feb. 2019.
  • [16]. I. P. Sousa, “Estudo do potencial energético e das variáveis do processo em biodigestores anaeróbios modelo lagoa coberta,” M. Eng. thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil, Jul. 2019.
  • [17]. R. O. Batista, R. A. de Oliveira, P. R. Cecon, J. A. R. de Souza, J. A. R., and R. O. Batista, “Nota Técnica – Filtração de água residuária de suinocultura em peneiras estacionárias inclinadas,” Engenharia na Agricultura, vol. 16, pp. 465-470, Oct./Dec. 2008.
  • [18]. A. C. Amaral, A. Kunz, R. L. R. Steınmetz, L. A. Scussıato, D. C. Tápparo and T. C. Gaspareto, “Influence of solid–liquid separation strategy on biogas yield from a stratified swine production system,” Journal of Environmental Management, vol. 168, pp. 229-235, 2016.
  • [19]. M. von Sperling, Wastewater characteristics, treatment and disposal. London: IWA Publ, 2007.
  • [20]. S. S. Liu., G. G. Ying, Y. S. Liu, Y. Y. Yang, L. Y. He, J. Chen, W. R. Liu, and J. J. Zhao, “Occurrence and removal of progestagens in two representative swine farms: Effectiveness of lagoon and digester treatment,” Water research, v. 77, p. 146-154, 2015.
  • [21]. (2021) Intergovernmental Panel on Climate Change - IPCC Fourth assessment report (AR4). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. 996p Available in http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf, Accessed 9th Apr 2021.
  • [22]. Y. Qi, B. Veatch, N. Beecher and M. Finn, “Biogas production and use of water resource recovery facilities in the United States,” Water Environment Federation, Alexandria, VA, National Biosolids Partnership, 2013.
  • [23]. M. Solé-Bundó, F. Passos, M. S. Romero-Güiza, I. Ferrer, and S. Astals, “Co-digestion strategies to enhance microalgae anaerobic digestion: A review,” Renew. Sustain. Energy Rev., vol. 112, no. June, pp. 471–482, 2019.
  • [24]. S. Astals, R. S. Musenze, X. Bai, S. Tannock, S. Tait, S. Pratt, and P. D. Jensen, “Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance,” Bioresour. Technol., vol. 181, pp. 97–104, Apr. 2015
  • [25]. A. Dennis and P. E. Burke, Dairy Waste Anaerobic Digestion Handbook, Olympia, Washington, United States: Environmental Energy Company, 2001.
  • [26]. G. Náthia-Neves, M. Berni, G. Dragone, S. I. Mussatto and T. Forster-Carneiro, “Anaerobic digestion process: technological aspects and recent developments,” International journal of environmental science and technology, vol. 15, pp. 2033-2046, May 2018.
  • [27]. M. Bavutti, L. Guidetti, G. Allesina, A. Libbra, A. Muscio and S. Pedrazzi, “Thermal stabilization of digesters of biogas plants by means of optimization of the surface radiative properties of the gasometer domes,” Energy Procedia, vol.45, pp.1344-1353, 2014.
  • [28]. (2021) The INMET website. [Online]. Available: http://www.portal.inmet.gov.br Accessed 9th Apr 2021.
  • [29]. M. A. Casarin, “Microgeração distribuída de energia elétrica a partir do biogás de dejetos suínos: uma contribuição para a sustentabilidade da suinocultura,” M. Eng. Thesis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil, Jan. 2016.
  • [30]. J. Martí-Herrero, R. Alvarez, M. R. Rojas, L. Alıaga, R. Céspedes and J. Carbonell, “Improvement through low-cost biofilm carrier in anaerobic tubular digestion in cold climate regions”, Bioresource Technology, vol. 167, pp. 87-93, May 2014.
  • [31]. R. Hreiz, N. Adouani, Y. Jannot and M. N. Pons, “Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester,” Chemical Engineering Research and Design, vol. 119, pp. 101-116, Jan. 2017.
  • [32]. R. Han, K. Hagos, X. Ji, S. Zhang, J. Chen, Z. Yang, X. Lu. and C. Wang, “Review on heat-utilization processes and heat-exchange equipment in biogas engineering,”. Journal of Renewable and Sustainable Energy, vol. 8, pp. 032701, May 2016.
  • [33]. N. Duan, D. Zhang, C. Lin, Y. Zhang, L. Zhao, H. Liu and Z. Liu, “Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios,” Journal of environmental management, vol. 231, pp.646-652, 2019.
  • [34]. C. Zhang, J. Sun., M. Lubell, L. Qiu and K. Kang, “Design and simulation of a novel hybrid solar-biomass energy supply system in northwest China,” Journal of Cleaner Production, vol. 233, pp. 1221-1239, Oct. 2019.
  • [35]. P. Ni, T. Lyu, H. Sun, R. Dong and S. Wu, “Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization,” Energy, vol. 141, pp. 1695–1704, Dec. 2017
  • [36]. S.CASSINI, Digestão de Resíduos Sólidos Orgânicos e Aproveitamento do Biogás, PROSAB, 1, Ed., Rio de Janeiro, RJ, Brazil: ABES, 2003
  • [37]. A. Petersson, Biogas cleaning, SP Technical Research Institute of Sweden, Sweden: Woodhead Publishing Limited, 2013.
  • [38]. R. G. Cervi, M. S. T. Esperancini and O. de C. Bueno, “Viabilidade econômica da utilização do biogás produzido em granja suinícola para geração de energia elétrica,” Engenharia Agrícola, vol. 30, pp. 831–844, Sep./Oct. 2010.
  • [39]. C. H. Coimbra-Araújo, L. Mariane, C. Bley Júnior, E. P. Frigo, M. S. Frigo, I. R. C. Araújo and H. J. Alves, “Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 826–839, Jul. 2014.
  • [40]. (2021) ER-BR Energias Renováveis Ltda. 2020 Catálogo - Grupo geradores a gás. [online]. Available: https://www.erbr.com.br/produtos/1/grupo-geradores. Accessed abr. 13, 2021
  • [41]. L. Lijó, S. González García, J. Bacenetti, M. Negri, M. Fiala, G. Feijoo and M. T. Moreira, “Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production,” Waste Management, vol. 41, pp. 50–59, 2015.
  • [42]. J. W. de Vries, T. M. W. J. Vinken, L. Hamelin, and I. J. M. de Boer, “Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective,” Bioresource Technology, vol. 125, pp. 239–248, Sep. 2012.

Insights to improve covered lagoon biodigesters through by-products recovery in pig farms

Year 2021, Volume: 4 Issue: 3, 284 - 292, 30.09.2021
https://doi.org/10.35208/ert.916126

Abstract

Pig farming activity has an important role in the Brazilian economy and generates effluents with a high polluting potential. The covered lagoon biodigester is a simple and suitable alternative for the treatment of swine manure. This work aimed to propose improvements to the pig effluent treatment system composed by covered lagoon biodigesters. Therefore, a survey of a typical plant configuration of pig effluent treatment was accomplished and alternatives were suggested in order to get a greater energy sustainability in farms through resource recovery. The proposed interventions were based on studies of scientific papers, technical equipment manuals, technical research and consultation with professionals of the field. The optimization of the systems operation considers some criteria, such as: (i) need for solids removal; (ii) organic loading; (iii) operation temperature; (iv) effluent recirculation; and (v) biogas energy recovery. Firstly, a typical scenario was identified without any improvements, in which the biogas is sent to flares without energy recovery. Subsequently, systems improvement insights were proposed, mainly regarding effluent heating through a solar heating system or by recovering the thermal energy from biogas and biogas recovering. The treatment optimization would increase the efficiency of organic matter removal and biogas production, as well as electric energy production and reduction in greenhouse gases emissions. The use of tools such as Life Cycle Analysis (LCA) can favor decision making and comparing proposed alternatives.

References

  • [1]. (2021) The Embrapa Suínos e Aves website. [Online]. Available: https://www.embrapa.br/suinos-e-aves/cias/estatisticas. Accessed 9th Apr 2021.
  • [2]. A. T. Matos and M. P. Matos, Disposição de águas residuárias no solo e em sistemas alagados construídos, 1st ed., Viçosa, Minas Gerais, Brazil: Editora UFV, 2017.
  • [3]. D. Nagarajan, A. Kusmayadi, H.-W. Yen, C.-D. Dong, D.-J. Lee, and J.-S. Chang, “Current advances in biological swine wastewater treatment using microalgae-based processes”, Bioresource Technology, vol. 289, p. 121718, out. 2019, doi: 10.1016/j.biortech.2019.121718.
  • [4]. C. A. de L. Chernicharo, Anaerobic reactors, ser. Biological Wastewater Treatment Series. Belo Horizonte, Minas Gerais, Brazil: IWA publishing, 2007, vol. 4.
  • [5]. L. F. Calza, C. B. Lima, C. E. C. Nogueira, J. A. C. Siqueira and R. F. Santos, “Avaliação dos custos de implantação de biodigestores e da energia produzida pelo biogás". Agricultural Engineering, vol. 35, pp. 990-997, Nov./Dec. 2015.
  • [6]. A. Kunz, R. L. R. Steinmetz and A. C. do Amaral, Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato, 1st ed., Concórdia, Santa Catarina, Brazil: Embrapa Suínos e Aves, 2019.
  • [7]. M. N. Kınyua, J. Zhang, F. Camacho-Céspedes, A. Tejada-Martinez and S. J. Ergas, “Use of physical and biological process models to understand the performance of tubular anaerobic digesters,”Biochemical Engineering Journal”, vol. 107, pp. 35–44, Dec. 2015.
  • [8]. A. C. L. de Oliveira, R. S. Milagres, W. A. Orlando Junior and N. S. Renato, “Evaluation of Brazilian potential for generating electricity through animal manure and sewage,” Biomass and Bioenergy, vol. 139, pp. 105654, Jul. 2020.
  • [9]. I. F. S. dos Santos, N. D. B. Vieira, L. G. B. de Nóbrega, R. M. Barros and G. L. Tiago Filho, “Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement,” Resources, Conservation and Recycling, vol. 131, pp. 54–63, Dec. 2017.
  • [10]. (2021) The Ministério do Meio Ambiente website. [Online]. Available: https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris. Accessed 9th Apr 2021
  • [11]. L. R. A. Ferreira, R. B. Otto, F. P. Silva, S. N. M. de Souza, S. S. de Souza and O. H. Ando Júnior, “Review of the energy potential of the residual biomass for the distributed generation in Brazil,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 440–455, Jun. 2018.
  • [12]. C. F. Souza, J. de Lucas Júnior, and W. P. M. Ferreira, “Biodigestão anaeróbia de dejetos de suínos sob efeito de três temperaturas e dois níveis de agitação do substrato: considerações sobre a partida,” Engenharia Agrícola, vol. 25, pp. 530-539, May/Aug. 2005.
  • [13]. F. Dong and J. Lu, “Using solar energy to enhance biogas production from livestock residue e A case study of the Tongren biogas engineering pig farm in South China,” Energy, vol. 57 pp. 759-765, 2013.
  • [14]. A. Feiden, J. Reichl, J. Schwab and V. Schwab, “Avaliação da eficiência de um biodigestor tubular na produção de biogás a partir de águas residuárias de suinocultura,” in Proc. 5th Encontro de Energia no Meio Rural e Geração Distribuída, 2004.
  • [15]. P. N. Vaz, “Simulação de biodigestor de fluxo tubular com e sem sistemas de recirculação e aquecimento,” M. Eng. Thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil, Feb. 2019.
  • [16]. I. P. Sousa, “Estudo do potencial energético e das variáveis do processo em biodigestores anaeróbios modelo lagoa coberta,” M. Eng. thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil, Jul. 2019.
  • [17]. R. O. Batista, R. A. de Oliveira, P. R. Cecon, J. A. R. de Souza, J. A. R., and R. O. Batista, “Nota Técnica – Filtração de água residuária de suinocultura em peneiras estacionárias inclinadas,” Engenharia na Agricultura, vol. 16, pp. 465-470, Oct./Dec. 2008.
  • [18]. A. C. Amaral, A. Kunz, R. L. R. Steınmetz, L. A. Scussıato, D. C. Tápparo and T. C. Gaspareto, “Influence of solid–liquid separation strategy on biogas yield from a stratified swine production system,” Journal of Environmental Management, vol. 168, pp. 229-235, 2016.
  • [19]. M. von Sperling, Wastewater characteristics, treatment and disposal. London: IWA Publ, 2007.
  • [20]. S. S. Liu., G. G. Ying, Y. S. Liu, Y. Y. Yang, L. Y. He, J. Chen, W. R. Liu, and J. J. Zhao, “Occurrence and removal of progestagens in two representative swine farms: Effectiveness of lagoon and digester treatment,” Water research, v. 77, p. 146-154, 2015.
  • [21]. (2021) Intergovernmental Panel on Climate Change - IPCC Fourth assessment report (AR4). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. 996p Available in http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf, Accessed 9th Apr 2021.
  • [22]. Y. Qi, B. Veatch, N. Beecher and M. Finn, “Biogas production and use of water resource recovery facilities in the United States,” Water Environment Federation, Alexandria, VA, National Biosolids Partnership, 2013.
  • [23]. M. Solé-Bundó, F. Passos, M. S. Romero-Güiza, I. Ferrer, and S. Astals, “Co-digestion strategies to enhance microalgae anaerobic digestion: A review,” Renew. Sustain. Energy Rev., vol. 112, no. June, pp. 471–482, 2019.
  • [24]. S. Astals, R. S. Musenze, X. Bai, S. Tannock, S. Tait, S. Pratt, and P. D. Jensen, “Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance,” Bioresour. Technol., vol. 181, pp. 97–104, Apr. 2015
  • [25]. A. Dennis and P. E. Burke, Dairy Waste Anaerobic Digestion Handbook, Olympia, Washington, United States: Environmental Energy Company, 2001.
  • [26]. G. Náthia-Neves, M. Berni, G. Dragone, S. I. Mussatto and T. Forster-Carneiro, “Anaerobic digestion process: technological aspects and recent developments,” International journal of environmental science and technology, vol. 15, pp. 2033-2046, May 2018.
  • [27]. M. Bavutti, L. Guidetti, G. Allesina, A. Libbra, A. Muscio and S. Pedrazzi, “Thermal stabilization of digesters of biogas plants by means of optimization of the surface radiative properties of the gasometer domes,” Energy Procedia, vol.45, pp.1344-1353, 2014.
  • [28]. (2021) The INMET website. [Online]. Available: http://www.portal.inmet.gov.br Accessed 9th Apr 2021.
  • [29]. M. A. Casarin, “Microgeração distribuída de energia elétrica a partir do biogás de dejetos suínos: uma contribuição para a sustentabilidade da suinocultura,” M. Eng. Thesis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil, Jan. 2016.
  • [30]. J. Martí-Herrero, R. Alvarez, M. R. Rojas, L. Alıaga, R. Céspedes and J. Carbonell, “Improvement through low-cost biofilm carrier in anaerobic tubular digestion in cold climate regions”, Bioresource Technology, vol. 167, pp. 87-93, May 2014.
  • [31]. R. Hreiz, N. Adouani, Y. Jannot and M. N. Pons, “Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester,” Chemical Engineering Research and Design, vol. 119, pp. 101-116, Jan. 2017.
  • [32]. R. Han, K. Hagos, X. Ji, S. Zhang, J. Chen, Z. Yang, X. Lu. and C. Wang, “Review on heat-utilization processes and heat-exchange equipment in biogas engineering,”. Journal of Renewable and Sustainable Energy, vol. 8, pp. 032701, May 2016.
  • [33]. N. Duan, D. Zhang, C. Lin, Y. Zhang, L. Zhao, H. Liu and Z. Liu, “Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios,” Journal of environmental management, vol. 231, pp.646-652, 2019.
  • [34]. C. Zhang, J. Sun., M. Lubell, L. Qiu and K. Kang, “Design and simulation of a novel hybrid solar-biomass energy supply system in northwest China,” Journal of Cleaner Production, vol. 233, pp. 1221-1239, Oct. 2019.
  • [35]. P. Ni, T. Lyu, H. Sun, R. Dong and S. Wu, “Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization,” Energy, vol. 141, pp. 1695–1704, Dec. 2017
  • [36]. S.CASSINI, Digestão de Resíduos Sólidos Orgânicos e Aproveitamento do Biogás, PROSAB, 1, Ed., Rio de Janeiro, RJ, Brazil: ABES, 2003
  • [37]. A. Petersson, Biogas cleaning, SP Technical Research Institute of Sweden, Sweden: Woodhead Publishing Limited, 2013.
  • [38]. R. G. Cervi, M. S. T. Esperancini and O. de C. Bueno, “Viabilidade econômica da utilização do biogás produzido em granja suinícola para geração de energia elétrica,” Engenharia Agrícola, vol. 30, pp. 831–844, Sep./Oct. 2010.
  • [39]. C. H. Coimbra-Araújo, L. Mariane, C. Bley Júnior, E. P. Frigo, M. S. Frigo, I. R. C. Araújo and H. J. Alves, “Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 826–839, Jul. 2014.
  • [40]. (2021) ER-BR Energias Renováveis Ltda. 2020 Catálogo - Grupo geradores a gás. [online]. Available: https://www.erbr.com.br/produtos/1/grupo-geradores. Accessed abr. 13, 2021
  • [41]. L. Lijó, S. González García, J. Bacenetti, M. Negri, M. Fiala, G. Feijoo and M. T. Moreira, “Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production,” Waste Management, vol. 41, pp. 50–59, 2015.
  • [42]. J. W. de Vries, T. M. W. J. Vinken, L. Hamelin, and I. J. M. de Boer, “Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective,” Bioresource Technology, vol. 125, pp. 239–248, Sep. 2012.
There are 42 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Larissa Almeida This is me 0000-0002-2282-8859

Raphael Oliveira This is me 0000-0003-1265-2658

Izabelle Sousa 0000-0002-5176-4612

Priscila Maradini This is me 0000-0003-2352-2795

André Rosa 0000-0001-5490-5698

Publication Date September 30, 2021
Submission Date April 15, 2021
Acceptance Date September 16, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Almeida, L., Oliveira, R., Sousa, I., Maradini, P., et al. (2021). Insights to improve covered lagoon biodigesters through by-products recovery in pig farms. Environmental Research and Technology, 4(3), 284-292. https://doi.org/10.35208/ert.916126
AMA Almeida L, Oliveira R, Sousa I, Maradini P, Rosa A. Insights to improve covered lagoon biodigesters through by-products recovery in pig farms. ERT. September 2021;4(3):284-292. doi:10.35208/ert.916126
Chicago Almeida, Larissa, Raphael Oliveira, Izabelle Sousa, Priscila Maradini, and André Rosa. “Insights to Improve Covered Lagoon Biodigesters through by-Products Recovery in Pig Farms”. Environmental Research and Technology 4, no. 3 (September 2021): 284-92. https://doi.org/10.35208/ert.916126.
EndNote Almeida L, Oliveira R, Sousa I, Maradini P, Rosa A (September 1, 2021) Insights to improve covered lagoon biodigesters through by-products recovery in pig farms. Environmental Research and Technology 4 3 284–292.
IEEE L. Almeida, R. Oliveira, I. Sousa, P. Maradini, and A. Rosa, “Insights to improve covered lagoon biodigesters through by-products recovery in pig farms”, ERT, vol. 4, no. 3, pp. 284–292, 2021, doi: 10.35208/ert.916126.
ISNAD Almeida, Larissa et al. “Insights to Improve Covered Lagoon Biodigesters through by-Products Recovery in Pig Farms”. Environmental Research and Technology 4/3 (September 2021), 284-292. https://doi.org/10.35208/ert.916126.
JAMA Almeida L, Oliveira R, Sousa I, Maradini P, Rosa A. Insights to improve covered lagoon biodigesters through by-products recovery in pig farms. ERT. 2021;4:284–292.
MLA Almeida, Larissa et al. “Insights to Improve Covered Lagoon Biodigesters through by-Products Recovery in Pig Farms”. Environmental Research and Technology, vol. 4, no. 3, 2021, pp. 284-92, doi:10.35208/ert.916126.
Vancouver Almeida L, Oliveira R, Sousa I, Maradini P, Rosa A. Insights to improve covered lagoon biodigesters through by-products recovery in pig farms. ERT. 2021;4(3):284-92.