Research Article
BibTex RIS Cite

The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control

Year 2024, Volume: 7 Issue: 3, 313 - 334, 30.09.2024
https://doi.org/10.35208/ert.1405067

Abstract

In this study, selective precipitation using magnesium oxide (MgO) and bio-sorption with banana peels (BPs) were explored for the treatment and valorization of acid mine drainage (AMD). The treatment chain comprised two distinct stages of which selective precipitation of chemical species using MgO (step1) and polishing of pre-treated AMD using BPs (step 2). In stage 1, 2.0 L of AMD from coal mine were used for selective precipitation and recovery of chemical species using MgO. The results revealed that chemical species of concern were precipitated and recovered at different pH gradients with Fe(III) precipitated at pH ≤ 4, Al at pH ≥ 4-5, Fe(II), Mn and Zn at pH ≥ 8 while Ca and SO42─ were precipitated throughout the pH range. In stage 2, the pre-treated AMD water was polished using BPs. The results revealed an overall increase of pH from 1.7 to 10, and substantial removal of chemical species in the following removal efficiency: Al, Cu and Zn (100% each), ≥ Fe and Mn (99.99% each), ≥ Ni (99.93%), and ≥ SO42─ (90%). The chemical treatment step removed pollutants partially, whereas the bio-sorption step acted as a polishing stage by removing residual pollutants.

Ethical Statement

The project is supported by the Water Research Commission (WRC) of South Africa, Project Number C2022/2023-00933.

Supporting Institution

Water Research Commission (WRC)

Project Number

C2022/2023-00933

Thanks

The authors would like to acknowledge the Faculty of Science, University of Johannesburg for postdoctoral scholarship for NB. We acknowledge the University of Johannesburg Research Centre for Synthesis and Catalysis and Spectrum for the facility.

References

  • V. Masindi, J. G. Ndiritu, and J. P. Maree, “Fractional and step-wise recovery of chemical species from acid mine drainage using calcined cryptocrystalline magnesite nano-sheets: An experimental and geochemical modelling approach,” Journal of Environmental Chemical Engineering, Vol. 6(2), pp.1634–1650, 2018. [CrossRef]
  • N. Beauclair, V. Masindi, T. A. M. Makudali, M. Tekere, and I. M. Ndoh, “Assessing the performance of horizontally flowing subsurface wetland equipped with Vetiveria zizanioides for the treatment of acid mine drainage,” Advances in Environmental Technology, Vol. 8(2), pp. 103–127, 2022.
  • V. Masindi, M. S. Osman, and R. “Shingwenyana, valorization of acid mine drainage (AMD): A simplified approach to reclaim drinking water and synthesize valuable minerals-Pilot study,” Journal of Environmental Chemical Engineering, Vol. 7(3), Article 103082, 2019. [CrossRef]
  • J. G. Skousen, P. F. Ziemkiewicz, and L. M. McDonald, “Acid mine drainage formation, control and treatment: Approaches and strategies,” Extractive Industries and Society, Vol. 6(2), pp. 241–249, 2019. [CrossRef]
  • K. Moeng, “Community perceptions on the health risks of acid mine drainage: the environmental justice struggles of communities near mining fields,” Environmental Development Sustainaible, Vol. 21, pp. 2619–2640, 2019. [CrossRef]
  • V. Akinwekomi, J. P. Maree, C. Zvinowanda, and V. Masindi, “Synthesis of magnetite from iron-rich mine water using sodium carbonate,” Journal of Environmental Chemical Engineering, Vol. 5(3), pp. 2699–2707, 2017. [CrossRef]
  • D. K. Nordstrom, D. W. Blowes, and C. J. Ptacek, “Hydrogeochemistry and microbiology of mine drainage: An update,” Applied Geochemistry, Vol. 57, pp. 3–16, 2015. [CrossRef]
  • A. Teresa, C. Francisco, A. Catarina, R. Loayza-Muro, S. Bruna, J. Diaz-Curiel…, and J.A. Grande, “Extremely acidic eukaryotic (Micro) organisms: Life in acid mine drainage polluted environments — mini-review,” International Journal of Environmental Research and Public Health, Vol. 19(1), pp. 1–13, 2022. [CrossRef]
  • M. A. Caraballo, T. S. Rötting, F. Macías, J. M. Nieto, and C. Ayora, “Field multi-step limestone and MgO passive system to treat acid mine drainage with high metal concentrations,” Applied Geochemistry, Vol. 24(12), pp. 2301–11, 2009. [CrossRef]
  • T. S. Rötting, M. A. Caraballo, J. A. Serrano, C. Ayora, and J. Carrera, “Field application of calcite Dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations,” Applied Geochemistry, Vol. 23(6), pp. 1660–1674, 2008. [CrossRef]
  • O. Y. Toraman and M. S. Delibalta, “Ultrasonic desulfurization of low rank Turkish coal using various chemical reagents,” Journal of Multidisciplinary Engineering Sciences and Technology, Vol. 3(4), pp. 4621–4623, 2016. [CrossRef]
  • V. Masindi, M. W. Gitari, H. Tutu, and M. Debeer, “Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage,” Journal of Water Process Engineering, Vol. 8, pp. 227–240, 2015. [CrossRef]
  • C. O. A. Turingan, K. S. Cordero, A. L. Santos, G. S. L. Tan, R .D. Alorro, and A. H. Orbecido. “Acid mine drainage treatment using a process train with laterite mine waste, concrete waste, and limestone as treatment media, Water, Vol. 14(7), pp. 1–21, 2022. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and M. Tekere. “The treatment of acid mine drainage using vertically flowing wetland: Insights into the fate of chemical species,” Minerals, Vol. 11(5), pp. 1–24, 2021. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and T. Memory, “Passive remediation of acid mine drainage using phytoremediation: Role of substrate, plants, and external factors in inorganic contaminants removal,” Wiley, 2023.
  • L. Marchand, M. Mench, D. L. Jacob, and M. L. Otte, “Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review,” Environmental Pollution, Vol. 158(12), pp. 3447–3461, 2010. [CrossRef]
  • S. Alemdag, E. Akaryali, and M. A. Gücer, “Prediction of mine drainage generation potential and the prevention method of the groundwater pollution in the Gümüşköy (Kütahya) mineralization area, NW Turkey,” Journal of Mountain Sciences, Vol. 17, pp. 2387–2404, 2020. [CrossRef]
  • E. Akaryalı, M. A. Gücer, and S. Alemdağ, “Atık barajı rezervuarı ve cevher stok alanlarında asit maden drenajı (AMD) oluşumunun değerlendirilmesi: Gümüşhane örneği atık barajı rezervuarı ve cevher stok alanlarında asit maden drenajı (amd) oluşumunun değerlendirilmesi : Gümüşhane örneği,” Journal of Natural Hazard and Environmentno, Vol. 4(2), pp. 192–209, 2018. [CrossRef]
  • M. A. Gücer, S. Alemdağ, and E. Akaryali, “Assessment of acid mine drainage formation using geochemical and static tests in Mutki (Bitlis, SE Turkey) mineralization area,” Turkish Journal of Earth Sciences Vol. 29, pp. 1189–1210, 2020. [CrossRef]
  • G. H. Berghorn and G. R. Hunzeker, “Passive treatment alternatives for remediating abandoned- mine drainage,” Remediation, Vol. 11(3), pp. 111–127, 2001. [CrossRef]
  • J. D. Kiiskila, D. Sarkar, K. A. Feuerstein, and R. Datta, “A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides),” Environmental Sciences and Pollution Resarch, Vol. 24, pp. 27985–27993, 2017. [CrossRef]
  • D. Kiiskila, D. Sarkar, S. Panja, S. V Sahi, and R. Datta, “Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): A multiscale long-term study,” Ecological Engineering, Vol. 129, pp. 97–108, 2019. [CrossRef]
  • B. G. Lottermoser and P. M. Ashley, “Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions,” Environmental Pollution, Vol. 159(10), pp. 3028–3035, 2011. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and M. Tekere, “Effective treatment of acid mine drainage using a combination of MgO-nanoparticles and a series of constructed wetlands planted with Vetiveria zizanioides: A hybrid and stepwise approach,” Journal of Environmental Management, Vol. 310, Article 114751, 2022. [CrossRef]
  • B. Nguegang, V. Masindi, T. T.A.M. Msagati, M. Tekere, and A.A Ambushe, “Hybrid treatment of acid mine drainage using a combination of mgo-nps and a series of constructed wetland planted with vetiveria zizanioides,” 35th International Conference on Chemical, Biological and Environmental Engineering (ICCBEE-22) Nov. 28-29, 2022 Johannesburg (South Africa), 2022. [CrossRef]
  • V. Masindi, M. S. Osman, and A. M, Abu-Mahfouz, “Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water,” Desalination, Vol. 424, pp. 45–52, 2017. [CrossRef]
  • T. J. Hengen, M. K, Squillace, A. D. O’Sullivan, and J. J. Stone, “Life cycle assessment analysis of active and passive acid mine drainage treatment technologies,” Resources Conservation and Recycling. Vol. 86, pp. 160–167, 2014. [CrossRef]
  • E. MacIngova, and A. Luptakova, “Recovery of metals from acid mine drainage,” Chemical Engineering Transactions, Vol. 28, pp. 109–114, 2012.
  • A. N. Shabalala, S. O. Ekolu, S. Diop, and F. Solomon, “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − Column study,” Journal of Hazardous Materials,” Vol. 323(Pt B), pp. 641–653, 2017. [CrossRef]
  • A. Khan, (2014). “Ion exchange- A treatment option for acid mine drainage (Master’s thesis).” Available from NTNU Open. 2002.
  • O. Agboola, “The role of membrane technology in acid mine water treatment: A review,” Korean Journal of Chemical Engineering, Vol. 36, pp. 1389–1400, 2019. [CrossRef]
  • A. Munyengabe, C. Zvinowanda, J. Ramontja, and J.N. Zvimba, “Effective desalination of acid mine drainage using an advanced oxidation process: Sodium ferrate (VI) salt,” Water (Switzerland), Vol. 13(19), Article 2619, 2021. [CrossRef]
  • H. J. Choi, “Biosorption of heavy metals from acid mine drainage by modified sericite and microalgae hybrid system,” Water Air Soil Pollution, Vol. 226(6), Article 185, 2015. [CrossRef]
  • E. Y. Seo, Y. W. Cheong, G. J. Yim, K. W. Min, and J. N. Geroni, “Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH,” Catena, Vol. 148(Pt 1), pp.11–16, 2017. [CrossRef]
  • E. Torres, “Biosorption: A review of the latest advances,” Processes, Vol. 8(12), Article 1584, 2020. [CrossRef]
  • M. Danouche, H. El Arroussi, W. Bahafid, and N. El Ghachtouli, “An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells,” Environmental Technology Reviews, Vol. 10(1), pp. 58–76, 2020. [CrossRef]
  • R. J. Nathan, C. E. Martin, D. Barr, R. J. Rosengren, “Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads : A study of biosorption kinetics,” Applied Water and Sciences, Vol. 11(7), Article 116, 2021. [CrossRef]
  • D. Ramutshatsha-Makhwedzha, R. Mbaya, and M. L. Mavhungu, “Application of activated carbon banana peel coated with Al2O3-Chitosan for the adsorptive removal of lead and cadmium from wastewater,” Materials, Vol. 15(3), Article 869, 2022. [CrossRef]
  • S. Park, and M. Lee, “Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent,” Geosciences Journal, Vol. 21, pp. 373–383, 2017. [CrossRef]
  • L. F. Leon-Fernandez, H. L. Medina-Díaz, O. G. Pérez, R. Romero, J. Villasenor, and F. J. Fernández-Morales, “Acid mine drainage treatment and sequential metal recovery by means of bioelectrochemical technology,” Journal of Chemical Technology and Biotechnology, Vol. 96(6), pp.1543–1552, 2021. [CrossRef]
  • T. Chen, B. Yan, C. Lei, and X. Xiao, “Pollution control and metal resource recovery for acid mine drainage,” Hydrometallurgy, Vol. 147–148, pp.112–119, 2014. [CrossRef]
  • C. Oh, Y. S. Han, J. H. Park, S. Bok, Y. Cheong, G. Yim, and S. Ji, “Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine,” Sciences of the Total Environment, Vol. 557–558, pp. 212–220, 2016. [CrossRef]
  • A. Navarro, M. I. Martínez da Matta, “Application of magnesium oxide for metal removal in mine water treatment,” Sustainability, Vol. 14(23), Article 15857, 2022. [CrossRef]
  • A. Sulaiman, A. Othman, and Ibrahim I, “The use of magnesium oxide in acid mine drainage treatment,” Materials Today: Proceeding, Vol. 5(10), pp. 21566–21573, 2018. [CrossRef]
  • E. Mamakoa, V. Masindi, H. Neomagus, “Comparison of MgO and MgCO3 in the treatment of Acid Mine Drainage.” 2020. http://eares.org/siteadmin/upload/5831EAP1120216.pdf. data/QCL Accessed on Apr 24, 2023.
  • A. Ali, “Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent,” Environmental Nanotechnology Monitoring and Management, Vol. 7, pp. 57–63, 2017. [CrossRef]
  • J. M. Mahlangu, G. S. Simate, and M. Beer, “Adsorption of Mn2+ from the acid mine drainage using banana peel,” International Journal of Water and Wastewater Treatment, Vol. 4(1), pp. 1–9, 2018. [CrossRef]
  • P. Pourhakkak, A. Taghizadeh, M. Taghizadeh, M. Ghaedi, and S. Haghdoust, “Chapter 1- Fundamentals of Adsorption Technology,” Vol. 33, pp. 1–70, 2021. [CrossRef]
  • W. J. Shin, H. S. Shin, J. H. Hwang, and K. S. Lee, “Effects of filter‐membrane materials on concentrations of trace elements in acidic solutions,” Water (Switzerland), Vol. 12(12), Article 3497, 2020. [CrossRef]
  • American Public Health Association (APHA), “American Water Works Association) Water Environment Federation, Stand. Methods Exam. Water Wastewater,” American Public Health Associatio, 2002.
  • A. B. M. Helal Uddin, R. S. Khalid, M. Alaama, A. M. Abdualkader, A. Kasmuri, S. A. Abbas, “Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry,” Journal of Analytical Sciences and Technology, Vol. 1, Article 6, 2020.
  • H. Hernández-Mendoza, M. Mejuto, A. I. Cardona, A. García-Álvarez, R. Millán, and A. Yllera, “Optimization and validation of a method for heavy metals quantification in soil samples by inductively coupled plasma sector field mass spectrometry (ICP-SFMS),” American Journal of Analytical Chemistry, Vol. 4, Article 10b, 2013. [CrossRef]
  • H. B. Vaziri, Y. Shekarian, and M. Rezaee, “Selective precipitation of rare earth and critical elements from acid mine drainage - Part I: Kinetics and thermodynamics of staged precipitation process,” Resources Conservation and Recycling, Vol.188, Article 106654, 2023. [CrossRef]
  • C. Rodríguez, E. Leiva-Aravena, J. Serrano, and E. Leiva, “Occurrence and removal of copper and aluminum in a stream confluence affected by acid mine drainage,” Water (Switzerland), Vol. 10(4), Article 516, 2018. [CrossRef]
  • J. S. España, “Chapter 7- The behavior of iron and aluminum in acid mine drainage. Speciation, mineralogy, and environmental significance,” Thermodynamics, Solubility and Environment Issues, pp.137–150, 2007. [CrossRef]
  • M. Santander-Muñoz, P. Cardozo-Castillo, and L. Valderrama-Campusano, “Removal of sulfate ions by precipitation and flotation, Ingineering Investigation,” Chemical, Food, and Environmental Engineering, Vol. 41, Article 3, 2021. [CrossRef]
  • A. G. Reiss, G, Ittai, Y. O. Rosenberg, I. J. Reznik, A. Luttge, S. Emmanuel, and J. Ganor, “Gypsum precipitation under saline conditions: Thermodynamics, kinetics, morphology, and size distribution,” Minerals. Vol. 11(2), Article 141, 2021. [CrossRef]
  • R. M. Freitas, T. A. G. Perilli, and A. C. Q. Ladeira, “Oxidative precipitation of manganese from acid mine drainage by potassium permanganate,” Journal of Chemistry, Vol. 2013, Article 287257, 2013. [CrossRef]
  • M. Hove, R. P. Van Hille, and A. E. Lewis. “Mechanisms of formation of iron precipitates from ferrous solutions at high and low pH,” Chemical Engineering Sciences, Vol. 63(6), 1626–1635, 2008. [CrossRef]
  • V, Masindi, M. W. Gitari, H. Tutu, M. De Beer, “Passive remediation of acid mine drainage using cryptocrystalline magnesite: A batch experimental and geochemical modelling approach,” Water SA, Vol. 41(5), pp. 677–682, 2015. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Adsorption of copper and lead ions in a binary system onto orange peels : Optimization, equilibrium and kinetic study,” Sustainability, Vol. 14(17), Article 10860, 2022. [CrossRef]
  • H. Mohd, J. Roslan, S. Saallah, E. Munsu, N. Shaeera, and W. Pindi, “Banana peels as a bioactive ingredient and its potential application in the food industry,” Journal of Function Foods, Vol. 92, Article 105054, 2021. [CrossRef]
  • M. M. Miranda, J. M. Bielicki, S. Chun, and C. M. Cheng, “Recovering rare earth elements from coal mine drainage using industrial byproducts: Environmental and economic consequences,” Environmental Engineering Sciences, Vol. 39(9), pp. 770–783, 2022. [CrossRef]
  • D. F. Parsons, and A. Salis, “The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces,” Journal of Chemistry and Physics, Vol. 142(13), Article 134707, 2015. [CrossRef]
  • S. Indah, D. Helard, T. Edwin, and R. Pratiwi, “Utilization of pumice from Sungai Pasak, West Sumatera, Indonesia as low-cost adsorbent in removal of manganese from aqueous solution,” AIP Conference Proceeding, Vol. 1823(1), pp.1823–1830, 2017. [CrossRef]
  • A. Mohan, “Study of sugarcane bagasse and orange peel as adsorbent for treatment of industrial effluent contaminated with nickel,” International Resources Journal of Engineering and Technology, Vol. 6, pp. 4725–4731, 2019.
  • M. Negroiu, A. T. Anca, E. Matei, M. Râpă, C. I. Covaliu, A. M. Predescu…, and C. Predescu, “Novel adsorbent based on banana peel waste for removal of heavy metal ions from synthetic solutions,” Materials, Vol. 14(14), pp. 3946–3958. [CrossRef]
  • M. Abd-Elaziz, M. G. Taha, M. Gahly, and H. T. Hefnawy, “Removal of Fe3+ and Pb2+ ions from aqueous solutions by adsorption using banana peels,” Zagazig Journal of Agricultural Resources, Vol. 49(4), pp. 853–864, 2022. [CrossRef]
  • N. R. Molaudzi, and A. A Ambushe, “Sugarcane bagasse and orange peels as low-cost biosorbents for the removal of lead ions from contaminated,” Water, Vol. 14(21), Article 3395, 2022. [CrossRef]
  • G. Teng, X. Yuen, and X. Fen, “Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents : A review,” Environmental Resources, Vol. 212(Pt B), Article 113248, 2022. [CrossRef]
  • M. Bilal, I. Ihsanullah, M. Younas, and M. H.Shah, “Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review,” Separation and Purification Technology, Vol. 278, Article 119510, 2021. [CrossRef]
  • K. Khairiah, E. Frida, K. Sebayang, P. Sinuhaji, and S. Humaidi, “Data on characterization, model and adsorption rate of banana peel activated carbon (Musa Acuminata ) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe), Data in Brief, Vol. 39, Article 107611, 2021. [CrossRef]
  • R M. Mohamed, N. Hashim, A. Suhaila, N. Abdullah, A. Mohamed, M. A. A. Daud…, and S. Abdullah, “Adsorption of heavy metals on banana peel bioadsorbent,” Journal of Physics, Vol. 1521, Article 012014, 2020. [CrossRef]
  • Y. Zheng, X. Zhang, Z. Bai, and Z. Zhang, “Characterization of the surface properties of MgO using paper spray mass spectrometry,” Rapid Commun Mass Spectrum, Vol. 30(S1), pp. 217–225, 2016. [CrossRef]
  • X. Wei, R. C. Viadero, and K. M. Buzby, “Recovery of iron and aluminum from acid mine drainage by selective precipitation,” Environmental Engineering Sciences, Vol. 22(6), 745–755, 2005. [CrossRef]
  • Y. Li, Z. Xu, H. Ma, and A. S. Hursthouse, “Removal of manganese(II) from acid mine wastewater: A review of the challenges and opportunities with special emphasis on mn-oxidizing bacteria and microalgae,” Water (Switzerland), Vol. 11(12), Article 2493. [CrossRef]
  • R. M. Salim, A. Jalal, K. Chowdhury, and R. Rayathulhan, “Biosorption of Pb(II) and Cu(II) from aqueous solution using banana peel powder Biosorption of Pb and Cu from aqueous solution using banana peel powder,” Desalination and Water Treatment, Vol. 57(1), pp. 303–314, 2016. [CrossRef]
  • Y. Zhang, S. Liao, Y. Fan, J. Xu, and F. Wang, “Chemical reactivities of magnesium nanopowders,” Journal of Nanoparticle Research, Vol. 3(1), pp. 23–26, 2001. [CrossRef]
  • I. Shancita, N. G. Vaz, G. D. Fernandes, A. J. A. Aquino, D. Tunega, and M. L. Pantoya, “Regulating magnesium combustion using surface chemistry and heating rate,” Combustion and Flame, Vol. 226, pp. 419–429, 2021. [CrossRef]
  • R. Coetzee, C. Dorfling, and S. M. Bradshaw, “Characterization of precipitate formed during the removal of iron and precious metals from sulphate leach solutions,” Journal of Southern African Institute of Minerals and Metallurgic, Vol. 117, pp. 771–778, 2017. [CrossRef]
  • W. M. Gitari, L. F. Petrik, O. Etchebers, D. L. Key, E. Iwuoha, and C. Okujeni, “Passive neutralisation of acid mine drainage by fly ash and its derivatives: A column leaching study,” Fuel, Vol. 87(8–9), pp. 1637–1650, 2008. [CrossRef]
  • V. Masindi, 1A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings,” Journal of Water Process Engineering, Vol. 10, pp. 67–77, 2016. [CrossRef]
  • R. Khosravi, R. Fatahi, H. Siavoshi, and F. Molaei, “Recovery of manganese from zinc smelter slag,” American Journal of Engineering Applied Sciences, Vol. 13(4), pp. 748–758, 2020. [CrossRef]
  • D. Gopi, K. Kanimozhi, N. Bhuvaneshwari, J. Indira, and L. Kavitha, “Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization,” Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Vol. 118, pp. 589–597, 2014. [CrossRef]
  • J. R. Memon, S. Q. Memon, M. I. Bhanger, G. Z. Memon, A. El-Turki, and G. C. Allen, “Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surfaces B Biointerfaces,” Vol. 66, pp. 260–265, 2008. [CrossRef]
  • G. Balakrishnan, R. Velavan, B. K. Mujasam, and E.H. Raslan,” Microstructure, optical and photocatalytic properties of MgO nanoparticles,” Results in Physics, Vol. 16, Article 103013. 2020. [CrossRef]
  • J. T. Richardson, R. Scates, and M. V. Twigg, “X-ray diffraction study of nickel oxide reduction by hydrogen,” Applied Catalyst A General, Vol. 246, pp. 137–150, 2003. [CrossRef]
  • H. Tibolla, F. M. Pelissari, J. T. Martins, A. A. Vicente, and F.C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment,” Food Hydrocoll, Vol. 75, pp.192–201, 2018. [CrossRef]
  • S. Mishra, B. Prabhakar, P. S. Kharkar, and A. M. Pethe, “Banana peel waste: An emerging cellulosic material to extract nanocrystalline cellulose,” ACS Omega,Vol. 8(1), pp.1140–1145, 2023. [CrossRef]
  • N. K. Nga, N. T. Thuy Chau, and P. H. Viet, “Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution,” Journal of Sciences and Advances Materials Devices, Vol. 5(1), pp. 65–72, 2020. [CrossRef]
  • N. Sutradhar, S. Apurba, S. K. Pahari, P. Pal, C.H. Bajaj, I., Mukhopadhyay, and A. B. Panda, “Controlled synthesis of different morphologies of MgO and their use as solid base catalysts,” Journal of Physics and Chemistry, Vol. 115(25), pp.12308–12316, 2011. [CrossRef]
  • D. Arifiyana, and V. A. Devianti, “Biosorption of Fe(II) ions from aqueous solution using banana peels (Musa a cuminate),” Jurnal Kimia Dan Pendidikan Kimia, Vol. 6(2), pp. 206–215, 2021. [CrossRef]
  • H. J. Rao, “Characterization studies on adsorption of lead and cadmium using activated carbon prepared from waste tyres,” Natural Environmental Pollution Technology, Vol. 20, pp. 561–568, 2021. [CrossRef]
  • T. S. Badessa, E. Wakuma, and A. M. Yimer, “Bio‑sorption for effective removal of chromium(VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP),” BMC Chemistry, Vol. 14, Article 71, 2020. [CrossRef]
  • R. C. Rivas-Cantu, K. D. Jones, and P. L. Mills, “A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges,” Waste Management and Resources, Vol. 31(4), pp. 413–420, 2013. [CrossRef]
  • J. R. Ayala, G. Montero, M. A. Coronado, C. Garcia, M. A. Curiel-Alvarez, J. A. Leon…, and D. G. Montes, “Characterization of orange peel waste and valorization to obtain reducing sugars,” Molecules, Vol. 26(5), Article 1348, 2021. [CrossRef]
  • J. I. Z. Montero, A. S. C. Monteiro, E .S. J. Gontijo, C. C. Bueno, M. A. De Moraes, and A. H. Rosa, “High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biocharsi,” Ecotoxicology and Environmental Safety, Vol. 162, pp. 616–624, 2018. [CrossRef]
  • I. Kabenge, G. Omulo, N. Banadda, J. Seay, A. Zziwa, and N. Kiggundu, “Characterization of banana peels wastes as potential slow pyrolysis feedstock,” Journal of Sustainable Development, Vol. 11(2), pp.14–24, 2018. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Bio-sorption of a bi-solute system of copper and lead ions onto banana peels: characterization and optimization,” Journal of Environmetal Health Sciences and Engineering, Vol. 19, pp. 613–624, 2021. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Bio-sorption of copper and lead ions in single and binary systems onto banana peels,” Cogent Engineering, Vol. 8(1), Article 1886730, 2021. [CrossRef]
  • A. Moubarik, and N. Grimi, “Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution,” Food Research International, Vol. 73, pp. 169–175, 2015. [CrossRef]
  • M. A. Hossain, H. H. Ngo, W. S. Guo, and T. V. Nguyen, “Removal of copper from water by adsorption onto banana peel as bioadsorbent,” International Journal of Geomate, Vol. 2, pp. 227–234, 2012. [CrossRef]
  • G. Alaa El-Din, A. A. Amer, G. Malsh, and M. Hussein, “Study on the use of banana peels for oil spill removal,” Alexandria Engineering Journal, Vol. 57(3), pp. 2061–2068, 2018. [CrossRef]
  • R. M. Alghanmi, “ICP-OES determination of trace metal ions after preconcentration using silica gel modified with 1,2-dihydroxyanthraquinone,” Journal of Chemistry, Vol. 9, Article 279628, 2012. [CrossRef]
Year 2024, Volume: 7 Issue: 3, 313 - 334, 30.09.2024
https://doi.org/10.35208/ert.1405067

Abstract

Project Number

C2022/2023-00933

References

  • V. Masindi, J. G. Ndiritu, and J. P. Maree, “Fractional and step-wise recovery of chemical species from acid mine drainage using calcined cryptocrystalline magnesite nano-sheets: An experimental and geochemical modelling approach,” Journal of Environmental Chemical Engineering, Vol. 6(2), pp.1634–1650, 2018. [CrossRef]
  • N. Beauclair, V. Masindi, T. A. M. Makudali, M. Tekere, and I. M. Ndoh, “Assessing the performance of horizontally flowing subsurface wetland equipped with Vetiveria zizanioides for the treatment of acid mine drainage,” Advances in Environmental Technology, Vol. 8(2), pp. 103–127, 2022.
  • V. Masindi, M. S. Osman, and R. “Shingwenyana, valorization of acid mine drainage (AMD): A simplified approach to reclaim drinking water and synthesize valuable minerals-Pilot study,” Journal of Environmental Chemical Engineering, Vol. 7(3), Article 103082, 2019. [CrossRef]
  • J. G. Skousen, P. F. Ziemkiewicz, and L. M. McDonald, “Acid mine drainage formation, control and treatment: Approaches and strategies,” Extractive Industries and Society, Vol. 6(2), pp. 241–249, 2019. [CrossRef]
  • K. Moeng, “Community perceptions on the health risks of acid mine drainage: the environmental justice struggles of communities near mining fields,” Environmental Development Sustainaible, Vol. 21, pp. 2619–2640, 2019. [CrossRef]
  • V. Akinwekomi, J. P. Maree, C. Zvinowanda, and V. Masindi, “Synthesis of magnetite from iron-rich mine water using sodium carbonate,” Journal of Environmental Chemical Engineering, Vol. 5(3), pp. 2699–2707, 2017. [CrossRef]
  • D. K. Nordstrom, D. W. Blowes, and C. J. Ptacek, “Hydrogeochemistry and microbiology of mine drainage: An update,” Applied Geochemistry, Vol. 57, pp. 3–16, 2015. [CrossRef]
  • A. Teresa, C. Francisco, A. Catarina, R. Loayza-Muro, S. Bruna, J. Diaz-Curiel…, and J.A. Grande, “Extremely acidic eukaryotic (Micro) organisms: Life in acid mine drainage polluted environments — mini-review,” International Journal of Environmental Research and Public Health, Vol. 19(1), pp. 1–13, 2022. [CrossRef]
  • M. A. Caraballo, T. S. Rötting, F. Macías, J. M. Nieto, and C. Ayora, “Field multi-step limestone and MgO passive system to treat acid mine drainage with high metal concentrations,” Applied Geochemistry, Vol. 24(12), pp. 2301–11, 2009. [CrossRef]
  • T. S. Rötting, M. A. Caraballo, J. A. Serrano, C. Ayora, and J. Carrera, “Field application of calcite Dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations,” Applied Geochemistry, Vol. 23(6), pp. 1660–1674, 2008. [CrossRef]
  • O. Y. Toraman and M. S. Delibalta, “Ultrasonic desulfurization of low rank Turkish coal using various chemical reagents,” Journal of Multidisciplinary Engineering Sciences and Technology, Vol. 3(4), pp. 4621–4623, 2016. [CrossRef]
  • V. Masindi, M. W. Gitari, H. Tutu, and M. Debeer, “Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage,” Journal of Water Process Engineering, Vol. 8, pp. 227–240, 2015. [CrossRef]
  • C. O. A. Turingan, K. S. Cordero, A. L. Santos, G. S. L. Tan, R .D. Alorro, and A. H. Orbecido. “Acid mine drainage treatment using a process train with laterite mine waste, concrete waste, and limestone as treatment media, Water, Vol. 14(7), pp. 1–21, 2022. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and M. Tekere. “The treatment of acid mine drainage using vertically flowing wetland: Insights into the fate of chemical species,” Minerals, Vol. 11(5), pp. 1–24, 2021. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and T. Memory, “Passive remediation of acid mine drainage using phytoremediation: Role of substrate, plants, and external factors in inorganic contaminants removal,” Wiley, 2023.
  • L. Marchand, M. Mench, D. L. Jacob, and M. L. Otte, “Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review,” Environmental Pollution, Vol. 158(12), pp. 3447–3461, 2010. [CrossRef]
  • S. Alemdag, E. Akaryali, and M. A. Gücer, “Prediction of mine drainage generation potential and the prevention method of the groundwater pollution in the Gümüşköy (Kütahya) mineralization area, NW Turkey,” Journal of Mountain Sciences, Vol. 17, pp. 2387–2404, 2020. [CrossRef]
  • E. Akaryalı, M. A. Gücer, and S. Alemdağ, “Atık barajı rezervuarı ve cevher stok alanlarında asit maden drenajı (AMD) oluşumunun değerlendirilmesi: Gümüşhane örneği atık barajı rezervuarı ve cevher stok alanlarında asit maden drenajı (amd) oluşumunun değerlendirilmesi : Gümüşhane örneği,” Journal of Natural Hazard and Environmentno, Vol. 4(2), pp. 192–209, 2018. [CrossRef]
  • M. A. Gücer, S. Alemdağ, and E. Akaryali, “Assessment of acid mine drainage formation using geochemical and static tests in Mutki (Bitlis, SE Turkey) mineralization area,” Turkish Journal of Earth Sciences Vol. 29, pp. 1189–1210, 2020. [CrossRef]
  • G. H. Berghorn and G. R. Hunzeker, “Passive treatment alternatives for remediating abandoned- mine drainage,” Remediation, Vol. 11(3), pp. 111–127, 2001. [CrossRef]
  • J. D. Kiiskila, D. Sarkar, K. A. Feuerstein, and R. Datta, “A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides),” Environmental Sciences and Pollution Resarch, Vol. 24, pp. 27985–27993, 2017. [CrossRef]
  • D. Kiiskila, D. Sarkar, S. Panja, S. V Sahi, and R. Datta, “Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): A multiscale long-term study,” Ecological Engineering, Vol. 129, pp. 97–108, 2019. [CrossRef]
  • B. G. Lottermoser and P. M. Ashley, “Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions,” Environmental Pollution, Vol. 159(10), pp. 3028–3035, 2011. [CrossRef]
  • B. Nguegang, V. Masindi, T. A. M. Msagati, and M. Tekere, “Effective treatment of acid mine drainage using a combination of MgO-nanoparticles and a series of constructed wetlands planted with Vetiveria zizanioides: A hybrid and stepwise approach,” Journal of Environmental Management, Vol. 310, Article 114751, 2022. [CrossRef]
  • B. Nguegang, V. Masindi, T. T.A.M. Msagati, M. Tekere, and A.A Ambushe, “Hybrid treatment of acid mine drainage using a combination of mgo-nps and a series of constructed wetland planted with vetiveria zizanioides,” 35th International Conference on Chemical, Biological and Environmental Engineering (ICCBEE-22) Nov. 28-29, 2022 Johannesburg (South Africa), 2022. [CrossRef]
  • V. Masindi, M. S. Osman, and A. M, Abu-Mahfouz, “Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water,” Desalination, Vol. 424, pp. 45–52, 2017. [CrossRef]
  • T. J. Hengen, M. K, Squillace, A. D. O’Sullivan, and J. J. Stone, “Life cycle assessment analysis of active and passive acid mine drainage treatment technologies,” Resources Conservation and Recycling. Vol. 86, pp. 160–167, 2014. [CrossRef]
  • E. MacIngova, and A. Luptakova, “Recovery of metals from acid mine drainage,” Chemical Engineering Transactions, Vol. 28, pp. 109–114, 2012.
  • A. N. Shabalala, S. O. Ekolu, S. Diop, and F. Solomon, “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − Column study,” Journal of Hazardous Materials,” Vol. 323(Pt B), pp. 641–653, 2017. [CrossRef]
  • A. Khan, (2014). “Ion exchange- A treatment option for acid mine drainage (Master’s thesis).” Available from NTNU Open. 2002.
  • O. Agboola, “The role of membrane technology in acid mine water treatment: A review,” Korean Journal of Chemical Engineering, Vol. 36, pp. 1389–1400, 2019. [CrossRef]
  • A. Munyengabe, C. Zvinowanda, J. Ramontja, and J.N. Zvimba, “Effective desalination of acid mine drainage using an advanced oxidation process: Sodium ferrate (VI) salt,” Water (Switzerland), Vol. 13(19), Article 2619, 2021. [CrossRef]
  • H. J. Choi, “Biosorption of heavy metals from acid mine drainage by modified sericite and microalgae hybrid system,” Water Air Soil Pollution, Vol. 226(6), Article 185, 2015. [CrossRef]
  • E. Y. Seo, Y. W. Cheong, G. J. Yim, K. W. Min, and J. N. Geroni, “Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH,” Catena, Vol. 148(Pt 1), pp.11–16, 2017. [CrossRef]
  • E. Torres, “Biosorption: A review of the latest advances,” Processes, Vol. 8(12), Article 1584, 2020. [CrossRef]
  • M. Danouche, H. El Arroussi, W. Bahafid, and N. El Ghachtouli, “An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells,” Environmental Technology Reviews, Vol. 10(1), pp. 58–76, 2020. [CrossRef]
  • R. J. Nathan, C. E. Martin, D. Barr, R. J. Rosengren, “Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads : A study of biosorption kinetics,” Applied Water and Sciences, Vol. 11(7), Article 116, 2021. [CrossRef]
  • D. Ramutshatsha-Makhwedzha, R. Mbaya, and M. L. Mavhungu, “Application of activated carbon banana peel coated with Al2O3-Chitosan for the adsorptive removal of lead and cadmium from wastewater,” Materials, Vol. 15(3), Article 869, 2022. [CrossRef]
  • S. Park, and M. Lee, “Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent,” Geosciences Journal, Vol. 21, pp. 373–383, 2017. [CrossRef]
  • L. F. Leon-Fernandez, H. L. Medina-Díaz, O. G. Pérez, R. Romero, J. Villasenor, and F. J. Fernández-Morales, “Acid mine drainage treatment and sequential metal recovery by means of bioelectrochemical technology,” Journal of Chemical Technology and Biotechnology, Vol. 96(6), pp.1543–1552, 2021. [CrossRef]
  • T. Chen, B. Yan, C. Lei, and X. Xiao, “Pollution control and metal resource recovery for acid mine drainage,” Hydrometallurgy, Vol. 147–148, pp.112–119, 2014. [CrossRef]
  • C. Oh, Y. S. Han, J. H. Park, S. Bok, Y. Cheong, G. Yim, and S. Ji, “Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine,” Sciences of the Total Environment, Vol. 557–558, pp. 212–220, 2016. [CrossRef]
  • A. Navarro, M. I. Martínez da Matta, “Application of magnesium oxide for metal removal in mine water treatment,” Sustainability, Vol. 14(23), Article 15857, 2022. [CrossRef]
  • A. Sulaiman, A. Othman, and Ibrahim I, “The use of magnesium oxide in acid mine drainage treatment,” Materials Today: Proceeding, Vol. 5(10), pp. 21566–21573, 2018. [CrossRef]
  • E. Mamakoa, V. Masindi, H. Neomagus, “Comparison of MgO and MgCO3 in the treatment of Acid Mine Drainage.” 2020. http://eares.org/siteadmin/upload/5831EAP1120216.pdf. data/QCL Accessed on Apr 24, 2023.
  • A. Ali, “Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent,” Environmental Nanotechnology Monitoring and Management, Vol. 7, pp. 57–63, 2017. [CrossRef]
  • J. M. Mahlangu, G. S. Simate, and M. Beer, “Adsorption of Mn2+ from the acid mine drainage using banana peel,” International Journal of Water and Wastewater Treatment, Vol. 4(1), pp. 1–9, 2018. [CrossRef]
  • P. Pourhakkak, A. Taghizadeh, M. Taghizadeh, M. Ghaedi, and S. Haghdoust, “Chapter 1- Fundamentals of Adsorption Technology,” Vol. 33, pp. 1–70, 2021. [CrossRef]
  • W. J. Shin, H. S. Shin, J. H. Hwang, and K. S. Lee, “Effects of filter‐membrane materials on concentrations of trace elements in acidic solutions,” Water (Switzerland), Vol. 12(12), Article 3497, 2020. [CrossRef]
  • American Public Health Association (APHA), “American Water Works Association) Water Environment Federation, Stand. Methods Exam. Water Wastewater,” American Public Health Associatio, 2002.
  • A. B. M. Helal Uddin, R. S. Khalid, M. Alaama, A. M. Abdualkader, A. Kasmuri, S. A. Abbas, “Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry,” Journal of Analytical Sciences and Technology, Vol. 1, Article 6, 2020.
  • H. Hernández-Mendoza, M. Mejuto, A. I. Cardona, A. García-Álvarez, R. Millán, and A. Yllera, “Optimization and validation of a method for heavy metals quantification in soil samples by inductively coupled plasma sector field mass spectrometry (ICP-SFMS),” American Journal of Analytical Chemistry, Vol. 4, Article 10b, 2013. [CrossRef]
  • H. B. Vaziri, Y. Shekarian, and M. Rezaee, “Selective precipitation of rare earth and critical elements from acid mine drainage - Part I: Kinetics and thermodynamics of staged precipitation process,” Resources Conservation and Recycling, Vol.188, Article 106654, 2023. [CrossRef]
  • C. Rodríguez, E. Leiva-Aravena, J. Serrano, and E. Leiva, “Occurrence and removal of copper and aluminum in a stream confluence affected by acid mine drainage,” Water (Switzerland), Vol. 10(4), Article 516, 2018. [CrossRef]
  • J. S. España, “Chapter 7- The behavior of iron and aluminum in acid mine drainage. Speciation, mineralogy, and environmental significance,” Thermodynamics, Solubility and Environment Issues, pp.137–150, 2007. [CrossRef]
  • M. Santander-Muñoz, P. Cardozo-Castillo, and L. Valderrama-Campusano, “Removal of sulfate ions by precipitation and flotation, Ingineering Investigation,” Chemical, Food, and Environmental Engineering, Vol. 41, Article 3, 2021. [CrossRef]
  • A. G. Reiss, G, Ittai, Y. O. Rosenberg, I. J. Reznik, A. Luttge, S. Emmanuel, and J. Ganor, “Gypsum precipitation under saline conditions: Thermodynamics, kinetics, morphology, and size distribution,” Minerals. Vol. 11(2), Article 141, 2021. [CrossRef]
  • R. M. Freitas, T. A. G. Perilli, and A. C. Q. Ladeira, “Oxidative precipitation of manganese from acid mine drainage by potassium permanganate,” Journal of Chemistry, Vol. 2013, Article 287257, 2013. [CrossRef]
  • M. Hove, R. P. Van Hille, and A. E. Lewis. “Mechanisms of formation of iron precipitates from ferrous solutions at high and low pH,” Chemical Engineering Sciences, Vol. 63(6), 1626–1635, 2008. [CrossRef]
  • V, Masindi, M. W. Gitari, H. Tutu, M. De Beer, “Passive remediation of acid mine drainage using cryptocrystalline magnesite: A batch experimental and geochemical modelling approach,” Water SA, Vol. 41(5), pp. 677–682, 2015. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Adsorption of copper and lead ions in a binary system onto orange peels : Optimization, equilibrium and kinetic study,” Sustainability, Vol. 14(17), Article 10860, 2022. [CrossRef]
  • H. Mohd, J. Roslan, S. Saallah, E. Munsu, N. Shaeera, and W. Pindi, “Banana peels as a bioactive ingredient and its potential application in the food industry,” Journal of Function Foods, Vol. 92, Article 105054, 2021. [CrossRef]
  • M. M. Miranda, J. M. Bielicki, S. Chun, and C. M. Cheng, “Recovering rare earth elements from coal mine drainage using industrial byproducts: Environmental and economic consequences,” Environmental Engineering Sciences, Vol. 39(9), pp. 770–783, 2022. [CrossRef]
  • D. F. Parsons, and A. Salis, “The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces,” Journal of Chemistry and Physics, Vol. 142(13), Article 134707, 2015. [CrossRef]
  • S. Indah, D. Helard, T. Edwin, and R. Pratiwi, “Utilization of pumice from Sungai Pasak, West Sumatera, Indonesia as low-cost adsorbent in removal of manganese from aqueous solution,” AIP Conference Proceeding, Vol. 1823(1), pp.1823–1830, 2017. [CrossRef]
  • A. Mohan, “Study of sugarcane bagasse and orange peel as adsorbent for treatment of industrial effluent contaminated with nickel,” International Resources Journal of Engineering and Technology, Vol. 6, pp. 4725–4731, 2019.
  • M. Negroiu, A. T. Anca, E. Matei, M. Râpă, C. I. Covaliu, A. M. Predescu…, and C. Predescu, “Novel adsorbent based on banana peel waste for removal of heavy metal ions from synthetic solutions,” Materials, Vol. 14(14), pp. 3946–3958. [CrossRef]
  • M. Abd-Elaziz, M. G. Taha, M. Gahly, and H. T. Hefnawy, “Removal of Fe3+ and Pb2+ ions from aqueous solutions by adsorption using banana peels,” Zagazig Journal of Agricultural Resources, Vol. 49(4), pp. 853–864, 2022. [CrossRef]
  • N. R. Molaudzi, and A. A Ambushe, “Sugarcane bagasse and orange peels as low-cost biosorbents for the removal of lead ions from contaminated,” Water, Vol. 14(21), Article 3395, 2022. [CrossRef]
  • G. Teng, X. Yuen, and X. Fen, “Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents : A review,” Environmental Resources, Vol. 212(Pt B), Article 113248, 2022. [CrossRef]
  • M. Bilal, I. Ihsanullah, M. Younas, and M. H.Shah, “Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review,” Separation and Purification Technology, Vol. 278, Article 119510, 2021. [CrossRef]
  • K. Khairiah, E. Frida, K. Sebayang, P. Sinuhaji, and S. Humaidi, “Data on characterization, model and adsorption rate of banana peel activated carbon (Musa Acuminata ) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe), Data in Brief, Vol. 39, Article 107611, 2021. [CrossRef]
  • R M. Mohamed, N. Hashim, A. Suhaila, N. Abdullah, A. Mohamed, M. A. A. Daud…, and S. Abdullah, “Adsorption of heavy metals on banana peel bioadsorbent,” Journal of Physics, Vol. 1521, Article 012014, 2020. [CrossRef]
  • Y. Zheng, X. Zhang, Z. Bai, and Z. Zhang, “Characterization of the surface properties of MgO using paper spray mass spectrometry,” Rapid Commun Mass Spectrum, Vol. 30(S1), pp. 217–225, 2016. [CrossRef]
  • X. Wei, R. C. Viadero, and K. M. Buzby, “Recovery of iron and aluminum from acid mine drainage by selective precipitation,” Environmental Engineering Sciences, Vol. 22(6), 745–755, 2005. [CrossRef]
  • Y. Li, Z. Xu, H. Ma, and A. S. Hursthouse, “Removal of manganese(II) from acid mine wastewater: A review of the challenges and opportunities with special emphasis on mn-oxidizing bacteria and microalgae,” Water (Switzerland), Vol. 11(12), Article 2493. [CrossRef]
  • R. M. Salim, A. Jalal, K. Chowdhury, and R. Rayathulhan, “Biosorption of Pb(II) and Cu(II) from aqueous solution using banana peel powder Biosorption of Pb and Cu from aqueous solution using banana peel powder,” Desalination and Water Treatment, Vol. 57(1), pp. 303–314, 2016. [CrossRef]
  • Y. Zhang, S. Liao, Y. Fan, J. Xu, and F. Wang, “Chemical reactivities of magnesium nanopowders,” Journal of Nanoparticle Research, Vol. 3(1), pp. 23–26, 2001. [CrossRef]
  • I. Shancita, N. G. Vaz, G. D. Fernandes, A. J. A. Aquino, D. Tunega, and M. L. Pantoya, “Regulating magnesium combustion using surface chemistry and heating rate,” Combustion and Flame, Vol. 226, pp. 419–429, 2021. [CrossRef]
  • R. Coetzee, C. Dorfling, and S. M. Bradshaw, “Characterization of precipitate formed during the removal of iron and precious metals from sulphate leach solutions,” Journal of Southern African Institute of Minerals and Metallurgic, Vol. 117, pp. 771–778, 2017. [CrossRef]
  • W. M. Gitari, L. F. Petrik, O. Etchebers, D. L. Key, E. Iwuoha, and C. Okujeni, “Passive neutralisation of acid mine drainage by fly ash and its derivatives: A column leaching study,” Fuel, Vol. 87(8–9), pp. 1637–1650, 2008. [CrossRef]
  • V. Masindi, 1A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings,” Journal of Water Process Engineering, Vol. 10, pp. 67–77, 2016. [CrossRef]
  • R. Khosravi, R. Fatahi, H. Siavoshi, and F. Molaei, “Recovery of manganese from zinc smelter slag,” American Journal of Engineering Applied Sciences, Vol. 13(4), pp. 748–758, 2020. [CrossRef]
  • D. Gopi, K. Kanimozhi, N. Bhuvaneshwari, J. Indira, and L. Kavitha, “Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization,” Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Vol. 118, pp. 589–597, 2014. [CrossRef]
  • J. R. Memon, S. Q. Memon, M. I. Bhanger, G. Z. Memon, A. El-Turki, and G. C. Allen, “Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surfaces B Biointerfaces,” Vol. 66, pp. 260–265, 2008. [CrossRef]
  • G. Balakrishnan, R. Velavan, B. K. Mujasam, and E.H. Raslan,” Microstructure, optical and photocatalytic properties of MgO nanoparticles,” Results in Physics, Vol. 16, Article 103013. 2020. [CrossRef]
  • J. T. Richardson, R. Scates, and M. V. Twigg, “X-ray diffraction study of nickel oxide reduction by hydrogen,” Applied Catalyst A General, Vol. 246, pp. 137–150, 2003. [CrossRef]
  • H. Tibolla, F. M. Pelissari, J. T. Martins, A. A. Vicente, and F.C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment,” Food Hydrocoll, Vol. 75, pp.192–201, 2018. [CrossRef]
  • S. Mishra, B. Prabhakar, P. S. Kharkar, and A. M. Pethe, “Banana peel waste: An emerging cellulosic material to extract nanocrystalline cellulose,” ACS Omega,Vol. 8(1), pp.1140–1145, 2023. [CrossRef]
  • N. K. Nga, N. T. Thuy Chau, and P. H. Viet, “Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution,” Journal of Sciences and Advances Materials Devices, Vol. 5(1), pp. 65–72, 2020. [CrossRef]
  • N. Sutradhar, S. Apurba, S. K. Pahari, P. Pal, C.H. Bajaj, I., Mukhopadhyay, and A. B. Panda, “Controlled synthesis of different morphologies of MgO and their use as solid base catalysts,” Journal of Physics and Chemistry, Vol. 115(25), pp.12308–12316, 2011. [CrossRef]
  • D. Arifiyana, and V. A. Devianti, “Biosorption of Fe(II) ions from aqueous solution using banana peels (Musa a cuminate),” Jurnal Kimia Dan Pendidikan Kimia, Vol. 6(2), pp. 206–215, 2021. [CrossRef]
  • H. J. Rao, “Characterization studies on adsorption of lead and cadmium using activated carbon prepared from waste tyres,” Natural Environmental Pollution Technology, Vol. 20, pp. 561–568, 2021. [CrossRef]
  • T. S. Badessa, E. Wakuma, and A. M. Yimer, “Bio‑sorption for effective removal of chromium(VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP),” BMC Chemistry, Vol. 14, Article 71, 2020. [CrossRef]
  • R. C. Rivas-Cantu, K. D. Jones, and P. L. Mills, “A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges,” Waste Management and Resources, Vol. 31(4), pp. 413–420, 2013. [CrossRef]
  • J. R. Ayala, G. Montero, M. A. Coronado, C. Garcia, M. A. Curiel-Alvarez, J. A. Leon…, and D. G. Montes, “Characterization of orange peel waste and valorization to obtain reducing sugars,” Molecules, Vol. 26(5), Article 1348, 2021. [CrossRef]
  • J. I. Z. Montero, A. S. C. Monteiro, E .S. J. Gontijo, C. C. Bueno, M. A. De Moraes, and A. H. Rosa, “High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biocharsi,” Ecotoxicology and Environmental Safety, Vol. 162, pp. 616–624, 2018. [CrossRef]
  • I. Kabenge, G. Omulo, N. Banadda, J. Seay, A. Zziwa, and N. Kiggundu, “Characterization of banana peels wastes as potential slow pyrolysis feedstock,” Journal of Sustainable Development, Vol. 11(2), pp.14–24, 2018. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Bio-sorption of a bi-solute system of copper and lead ions onto banana peels: characterization and optimization,” Journal of Environmetal Health Sciences and Engineering, Vol. 19, pp. 613–624, 2021. [CrossRef]
  • F. O. Afolabi, P. Musonge, and B. F. Bakare, “Bio-sorption of copper and lead ions in single and binary systems onto banana peels,” Cogent Engineering, Vol. 8(1), Article 1886730, 2021. [CrossRef]
  • A. Moubarik, and N. Grimi, “Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution,” Food Research International, Vol. 73, pp. 169–175, 2015. [CrossRef]
  • M. A. Hossain, H. H. Ngo, W. S. Guo, and T. V. Nguyen, “Removal of copper from water by adsorption onto banana peel as bioadsorbent,” International Journal of Geomate, Vol. 2, pp. 227–234, 2012. [CrossRef]
  • G. Alaa El-Din, A. A. Amer, G. Malsh, and M. Hussein, “Study on the use of banana peels for oil spill removal,” Alexandria Engineering Journal, Vol. 57(3), pp. 2061–2068, 2018. [CrossRef]
  • R. M. Alghanmi, “ICP-OES determination of trace metal ions after preconcentration using silica gel modified with 1,2-dihydroxyanthraquinone,” Journal of Chemistry, Vol. 9, Article 279628, 2012. [CrossRef]
There are 104 citations in total.

Details

Primary Language English
Subjects Water Quality and Water Pollution
Journal Section Research Articles
Authors

Nguegang Beauclair 0000-0001-8506-9733

Abayneh Ambushe 0000-0001-8763-8346

Project Number C2022/2023-00933
Publication Date September 30, 2024
Submission Date December 15, 2023
Acceptance Date April 1, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Beauclair, N., & Ambushe, A. (2024). The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control. Environmental Research and Technology, 7(3), 313-334. https://doi.org/10.35208/ert.1405067
AMA Beauclair N, Ambushe A. The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control. ERT. September 2024;7(3):313-334. doi:10.35208/ert.1405067
Chicago Beauclair, Nguegang, and Abayneh Ambushe. “The Treatment of Acid Mine Drainage (AMD) Using a Combination of Selective Precipitation and Bio-Sorption Techniques: A Hybrid and Stepwise Approach for AMD Valorization and Environmental Pollution Control”. Environmental Research and Technology 7, no. 3 (September 2024): 313-34. https://doi.org/10.35208/ert.1405067.
EndNote Beauclair N, Ambushe A (September 1, 2024) The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control. Environmental Research and Technology 7 3 313–334.
IEEE N. Beauclair and A. Ambushe, “The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control”, ERT, vol. 7, no. 3, pp. 313–334, 2024, doi: 10.35208/ert.1405067.
ISNAD Beauclair, Nguegang - Ambushe, Abayneh. “The Treatment of Acid Mine Drainage (AMD) Using a Combination of Selective Precipitation and Bio-Sorption Techniques: A Hybrid and Stepwise Approach for AMD Valorization and Environmental Pollution Control”. Environmental Research and Technology 7/3 (September 2024), 313-334. https://doi.org/10.35208/ert.1405067.
JAMA Beauclair N, Ambushe A. The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control. ERT. 2024;7:313–334.
MLA Beauclair, Nguegang and Abayneh Ambushe. “The Treatment of Acid Mine Drainage (AMD) Using a Combination of Selective Precipitation and Bio-Sorption Techniques: A Hybrid and Stepwise Approach for AMD Valorization and Environmental Pollution Control”. Environmental Research and Technology, vol. 7, no. 3, 2024, pp. 313-34, doi:10.35208/ert.1405067.
Vancouver Beauclair N, Ambushe A. The treatment of acid mine drainage (AMD) using a combination of selective precipitation and bio-sorption techniques: A hybrid and stepwise approach for AMD valorization and environmental pollution control. ERT. 2024;7(3):313-34.