Electromagnetic Wave Absorption Performance of Carbon Nanocoils by Using Mixed Ferrites as Catalyst
Year 2022,
, 53 - 64, 23.12.2022
Fadzıdah Mohd Idrıs
,
Hatika Kaco
,
Siti Munirah Mohd
,
Nurhidaya Mohamad Jan
,
Haslinawati Mohd Mustapha
,
Zanariah Mohd Idris
Abstract
Rapid development of electronic devices and advanced technology creates more electromagnetic wave interference that is harmful to human health as well as equipment. Thus, the use of electromagnetic (EM) wave absorber becomes more focused among researchers and attracted more public attention. Carbon nanocoils (CNs) have been introduced due to its chemical, physical and mechanical properties that can produce lightweight, wide absorption range and strong absorption. This research highlights the use of mixed ferrites (Fe3O4 and CoFe2O4) as catalyst to grow carbon nanocoils. Different weight percentages of Fe3O4 and CoFe2O4 were mixed to grow carbon nanocoils and further used as fillers to be incorporated into epoxy matrix. The morphological study of synthesized carbon nanocoils and reflection loss of the prepared polymer composites were studied in the range of X-band and Ku-band at thickness 1 mm, 2 mm, and 3 mm. The reflection loss achieved shows that mixed ferrites as catalyst to grow carbon nanocoils have great potential to be used as an excellent EM wave absorbers at low thickness.
Supporting Institution
Ministry of Higher Education Malaysia
Project Number
(FRGS/1/2020/STG05/USIM/02/3) (USIM/FRGS/KGI/KPT/52020)
References
- Rodriguez, N. M., Kim, M. S., Fortin, Mochida, F., I., Baker, R. T. K., (1997) Carbon deposition on iron–nickel alloy particles, Appl Catal A: General, vol. 148(2), pp. 265–82.
- Motojima, S., Itoh, Y., Asakura, S., Iwanaga, H., (1995) Preparation of micro-coiled carbon fibers by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds, J Mater Sci, vol. 30(20), pp. 5049–55.
- Singh, B. P., Saket, D. K., Singh, A. P., Pati S., Gupta, T. K., Singh, V. N., Dhakate, S. R., Dhawan, S. K., Kotnala, R. K., Mathur, R. B., (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes, Journal of Materials Chemistry A, vol. 3(13203), pp. 1 -8.
- Zhang, M., Nakayama, Y., Pan, L. J., (2000) Synthesis of carbon tubule nanocoils in high yield using iron tin oxide as catalyst, Jpn J Appl Phys, vol. 39(12A), pp. 1242–1244.
- Tang, N. J., Zhong, W., Gedanken, A., Du, Y. W., (2006) High magnetization helical carbon nanofibers produced by nanoparticle catalysis, J Phys Chem B, vol. 110(24), pp. 11772–11774.
- Tang, N. J., Yang, Y., Lin, K., Zhong, W., Chaktong, A., Du, Y. W., (2008) Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties, J Phys Chem C, vol. 112(27), pp. 10061–10067, 2008.
- Motojima, S., Hoshiya, S., Hishikawa, Y., (2003) Electromagnetic wave absorption properties of carbon microcoils /PMMA composite beads in W bands, Carbon, vol. 41, pp. 2658-2660.
- Zhao, D. L., Shen, Z. M., (2008) Preparation and microwave absorption properties of carbon nanocoils, Mater. Lett., vol. 62, pp. 3704–3706.
- Tang, N. J., Zhong, W., Au, C. T., Yang, Y., Han, M. G., Lin, K. J., Du, Y. W., (2008) Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils, J. Phys. Chem. C, vol. 112, pp. 19316–19323.
- Hikita, M., Bradford, R., Lafdi, K., (2014) Growth and Properties of Carbon Microcoils and Nanocoils, Crystals, vol. 4, pp. 66-489.
- Somiya, S., (2013). Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, Elsevier: Netherlands.
- Das, R., Hamid, S. B. A., Alia, M. E., Ramakrishnab, S., Yongzhib, W., (2015) Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review, Current Nanoscience, vol. 11, pp. 23 – 35.
- Cheng, J., Zhang, X., Luo, Z., Liu, F., Ye, Y., Yin, W., Liu, W., Han, Y., (2006) Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD, Materials Chemistry and Physics, vol. 95(1), pp. 5–11.
- Qin, F., Brosseau, C., (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J Appl Phys., vol. 111, 061301.
- Che, R. C., Zhi, C. Y., Liang, C. Y., Zhou, X. G., (2006) Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel Nanocomposite, Applied Physics Letters, vol. 88 (3) 033105.
Year 2022,
, 53 - 64, 23.12.2022
Fadzıdah Mohd Idrıs
,
Hatika Kaco
,
Siti Munirah Mohd
,
Nurhidaya Mohamad Jan
,
Haslinawati Mohd Mustapha
,
Zanariah Mohd Idris
Project Number
(FRGS/1/2020/STG05/USIM/02/3) (USIM/FRGS/KGI/KPT/52020)
References
- Rodriguez, N. M., Kim, M. S., Fortin, Mochida, F., I., Baker, R. T. K., (1997) Carbon deposition on iron–nickel alloy particles, Appl Catal A: General, vol. 148(2), pp. 265–82.
- Motojima, S., Itoh, Y., Asakura, S., Iwanaga, H., (1995) Preparation of micro-coiled carbon fibers by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds, J Mater Sci, vol. 30(20), pp. 5049–55.
- Singh, B. P., Saket, D. K., Singh, A. P., Pati S., Gupta, T. K., Singh, V. N., Dhakate, S. R., Dhawan, S. K., Kotnala, R. K., Mathur, R. B., (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes, Journal of Materials Chemistry A, vol. 3(13203), pp. 1 -8.
- Zhang, M., Nakayama, Y., Pan, L. J., (2000) Synthesis of carbon tubule nanocoils in high yield using iron tin oxide as catalyst, Jpn J Appl Phys, vol. 39(12A), pp. 1242–1244.
- Tang, N. J., Zhong, W., Gedanken, A., Du, Y. W., (2006) High magnetization helical carbon nanofibers produced by nanoparticle catalysis, J Phys Chem B, vol. 110(24), pp. 11772–11774.
- Tang, N. J., Yang, Y., Lin, K., Zhong, W., Chaktong, A., Du, Y. W., (2008) Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties, J Phys Chem C, vol. 112(27), pp. 10061–10067, 2008.
- Motojima, S., Hoshiya, S., Hishikawa, Y., (2003) Electromagnetic wave absorption properties of carbon microcoils /PMMA composite beads in W bands, Carbon, vol. 41, pp. 2658-2660.
- Zhao, D. L., Shen, Z. M., (2008) Preparation and microwave absorption properties of carbon nanocoils, Mater. Lett., vol. 62, pp. 3704–3706.
- Tang, N. J., Zhong, W., Au, C. T., Yang, Y., Han, M. G., Lin, K. J., Du, Y. W., (2008) Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils, J. Phys. Chem. C, vol. 112, pp. 19316–19323.
- Hikita, M., Bradford, R., Lafdi, K., (2014) Growth and Properties of Carbon Microcoils and Nanocoils, Crystals, vol. 4, pp. 66-489.
- Somiya, S., (2013). Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, Elsevier: Netherlands.
- Das, R., Hamid, S. B. A., Alia, M. E., Ramakrishnab, S., Yongzhib, W., (2015) Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review, Current Nanoscience, vol. 11, pp. 23 – 35.
- Cheng, J., Zhang, X., Luo, Z., Liu, F., Ye, Y., Yin, W., Liu, W., Han, Y., (2006) Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD, Materials Chemistry and Physics, vol. 95(1), pp. 5–11.
- Qin, F., Brosseau, C., (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J Appl Phys., vol. 111, 061301.
- Che, R. C., Zhi, C. Y., Liang, C. Y., Zhou, X. G., (2006) Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel Nanocomposite, Applied Physics Letters, vol. 88 (3) 033105.