BibTex RIS Cite

ANALYSIS OF HIP PROSTHESIS PRODUCTION WITH FORGING USING THE FINITE ELEMENT METHOD

Year 2015, Volume: 8 Issue: 1, 69 - 87, 09.01.2015
https://doi.org/10.18185/eufbed.31555

Abstract

Hip prostheses used to fulfill injured or fractured limbs are made by machining, casting and plastic forming. Machining is the most commonly used one. However, there are many disadvantages such as high product cost in machining. Plastic forming methods provide more effective and durable implant production than machining. In this study, hip prosthesis with a complex geometry produced by forging were analyzed using the Finite Element Method (FEM). For this purpose, three-dimensional complex geometry was designed and then, FEM analyses were performed using MSC SIMUFACT 10 software. Factors affecting the production were defined as: temperature, friction coefficient and the pressing velocity. Stress distributions, temperature changes, die wears and punch forces applied to the die were examined. As a result of the study, the most suitable parameters were obtained as 500°C, 0.05 coefficient of friction and 2mm/s die velocity. Also, the obtained FEM results were examined by regression analyses.

References

  • Behrens, B.A, Schaefer, F, 2005, Prediction of wear in hot forging tools by means of finite-element-analysis, Journal of Materials Processing Technology, 167, 309-315.
  • Campatelli, G, Scippa, A, 2012, A heuristic approach to meet geometric tolerance in High Pressure Die casting, Simulation Modelling Practice and Theory, 22, 109-122.
  • Caporalli, A, Gileno, L.A, Button, S.T, 1998, Expert system for hot forging design, Journal of Materials Processing Technology, 80-81,131-135.
  • Doege, E, Alasti, M, Jürgensen, R.S, 2004, Accurate friction and heat transfer laws for enhanced simulation models of precision forging processes, Journal of materials Processing Technology, 150, 92-99.
  • Feng, J.P, Luo, Z.J, 2000, A method for the optimal control of forging process variables using the finite element method and control theory, Journal of Materials Processing Technology, 108, 40-44.
  • Garat, V, Bernhar, G, Hervy, L, 2004 Influence of design and process parameters on service life of nut hot forging die, Journal of Materials Processing Technology, 147,359-369.
  • Hallstrom, J, 2000, Influence of friction on die filling in counterblow hammer forging, Journal of Materials Processing Technology, 108, 21-25.
  • Hu, Z.M, Brooks, J.W, Dean, T.A, 1999, Experimental and theoretical analysis of deformation and microstructural evolution in the hot-die forging of titanium alloy aerofoil sections, Journal of Materials Processing Technology, 88, 251-265.
  • Hu, Z.M, Dean, T.A, 2001, Aspects of forging of titanium alloys and the production of blade forms, Journal of Materials Processing Technology, 111, 10-19.
  • Huang, Z.H, 2005, Workability and microstructure evolution of Ti- 47Al-2Cr-1Nb alloy during isothermal deformation, Intermetallics, 13, 245-250.
  • Kim, D.H, Lee, H.C, Kim, B.M, Kim, K.H, 2005, Estimation of die service life against plastic deformation and wear during hot forging processes, Journal of Materials Processing Technology, 166, 372-380.
  • Lee, R.S, Lin, H.C, 1998, Process design based on the deformation mechanism for the non-isothermal forging of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 79, 224- 235.
  • Ou, H, Balendra, R, 1998, Die-elasticity for precision forging of aerofoil sectionsusing finite element method, Journal of Materials Processing Technology, 76, 56-61.
  • Özkor, M, 2011, SIMUFACT presentation, http://www.ex-en.com.tr.
  • Saiki, H, Zhan, Z.H, Marumo, Y, Ruan, L, Morooka, T, Tatsuda, S.I, 2006, Evaluation of contact conditions in hot forging of pure aluminum using ltrasonic examination, Journal of Materials Processing Technology, 177, 243-246.
  • Skubisz, P, Sinczak, J, Bednarek, S, 2006, Forgeability of Mg–Al–Zn magnesium alloys in hot and warm closed die forging, Journal of Materials Processing Technology, 177, 210-213.
  • Tetsui, T, Shindo, K, Kaji, S, Kobayashi, S, Takeyama, M, 2005, Fabrication of TiAl component by means of hot forging and machining, Intermetallics, 13, 971-978.
  • Wilson, W.R.D, Schmid, S.R, Liu, J, 2004, Advanced simulations for hot forging: heat transfer model for use with the finite element method, Journal of Materials Processing Technology, 155-156, 1912-1917.

DÖVME İLE KALÇA PROTEZİ ÜRETİMİNİN SONLU ELEMANLAR YÖNTEMİYLE İNCELENMESİ

Year 2015, Volume: 8 Issue: 1, 69 - 87, 09.01.2015
https://doi.org/10.18185/eufbed.31555

Abstract

Yaralı veya kırık uzuvlarn işlemini yerine getirmek için kullanılan kalça protezleri döküm, plastik şekillendirme ve talaşlı imalat yöntemleri ile üretlmektedir. Bu konuda talaşlı imalat en yaygın olarak kullanılan yöntemdir. Ancak, talaşlı imalat yönteminin yüksek ürün maliyeti gibi bir çok dezavantajları vardır. Plastik şekillendirme yöntemleri daha etkin ve dayanıklı implant üretimi sağlar. Bu çalışmada, karmaşık geometriye sahip kalça protezinin dövme ile üretimi Sonlu Elemanlar Yöntemi (FEM) kullanılarak analiz edilmiştir. Bu amaçla, kalça protezin üç boyutlu modeli tasarlanmıştır ve daha sonra, FEM analizler MSC SIMUFACT 10 yazılımı kullanılarak yapılmıştır. Sıcaklık, sürtünme katsayısı ve presleme hızı üretimi etkileyen faktörler olarak tanımlanmıştır. Gerilme dağılımları, sıcaklık değişiklikleri ve kalıba uygulanacak kuvvet miktarı değerleri incelenmiştir. Çalışmanın sonucunda, en uygun parametreler 500°C sıcaklık, 2 mm/s presleme hızı ve 0.05 sürtünme katsayısı olarak elde edilmiştir. Aynı zamanda, elde edilen FEM sonuçları regresyon analizi ile incelenmiştir

References

  • Behrens, B.A, Schaefer, F, 2005, Prediction of wear in hot forging tools by means of finite-element-analysis, Journal of Materials Processing Technology, 167, 309-315.
  • Campatelli, G, Scippa, A, 2012, A heuristic approach to meet geometric tolerance in High Pressure Die casting, Simulation Modelling Practice and Theory, 22, 109-122.
  • Caporalli, A, Gileno, L.A, Button, S.T, 1998, Expert system for hot forging design, Journal of Materials Processing Technology, 80-81,131-135.
  • Doege, E, Alasti, M, Jürgensen, R.S, 2004, Accurate friction and heat transfer laws for enhanced simulation models of precision forging processes, Journal of materials Processing Technology, 150, 92-99.
  • Feng, J.P, Luo, Z.J, 2000, A method for the optimal control of forging process variables using the finite element method and control theory, Journal of Materials Processing Technology, 108, 40-44.
  • Garat, V, Bernhar, G, Hervy, L, 2004 Influence of design and process parameters on service life of nut hot forging die, Journal of Materials Processing Technology, 147,359-369.
  • Hallstrom, J, 2000, Influence of friction on die filling in counterblow hammer forging, Journal of Materials Processing Technology, 108, 21-25.
  • Hu, Z.M, Brooks, J.W, Dean, T.A, 1999, Experimental and theoretical analysis of deformation and microstructural evolution in the hot-die forging of titanium alloy aerofoil sections, Journal of Materials Processing Technology, 88, 251-265.
  • Hu, Z.M, Dean, T.A, 2001, Aspects of forging of titanium alloys and the production of blade forms, Journal of Materials Processing Technology, 111, 10-19.
  • Huang, Z.H, 2005, Workability and microstructure evolution of Ti- 47Al-2Cr-1Nb alloy during isothermal deformation, Intermetallics, 13, 245-250.
  • Kim, D.H, Lee, H.C, Kim, B.M, Kim, K.H, 2005, Estimation of die service life against plastic deformation and wear during hot forging processes, Journal of Materials Processing Technology, 166, 372-380.
  • Lee, R.S, Lin, H.C, 1998, Process design based on the deformation mechanism for the non-isothermal forging of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 79, 224- 235.
  • Ou, H, Balendra, R, 1998, Die-elasticity for precision forging of aerofoil sectionsusing finite element method, Journal of Materials Processing Technology, 76, 56-61.
  • Özkor, M, 2011, SIMUFACT presentation, http://www.ex-en.com.tr.
  • Saiki, H, Zhan, Z.H, Marumo, Y, Ruan, L, Morooka, T, Tatsuda, S.I, 2006, Evaluation of contact conditions in hot forging of pure aluminum using ltrasonic examination, Journal of Materials Processing Technology, 177, 243-246.
  • Skubisz, P, Sinczak, J, Bednarek, S, 2006, Forgeability of Mg–Al–Zn magnesium alloys in hot and warm closed die forging, Journal of Materials Processing Technology, 177, 210-213.
  • Tetsui, T, Shindo, K, Kaji, S, Kobayashi, S, Takeyama, M, 2005, Fabrication of TiAl component by means of hot forging and machining, Intermetallics, 13, 971-978.
  • Wilson, W.R.D, Schmid, S.R, Liu, J, 2004, Advanced simulations for hot forging: heat transfer model for use with the finite element method, Journal of Materials Processing Technology, 155-156, 1912-1917.
There are 18 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Hojjat Ghahramanzadeh Asl This is me

Sinan Sezek

Akgün Alsaran

Publication Date January 9, 2015
Published in Issue Year 2015 Volume: 8 Issue: 1

Cite

APA Ghahramanzadeh Asl, H., Sezek, S., & Alsaran, A. (2015). ANALYSIS OF HIP PROSTHESIS PRODUCTION WITH FORGING USING THE FINITE ELEMENT METHOD. Erzincan University Journal of Science and Technology, 8(1), 69-87. https://doi.org/10.18185/eufbed.31555