Research Article
BibTex RIS Cite

The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)

Year 2022, Volume: 15 Issue: 3, 916 - 930, 30.12.2022
https://doi.org/10.18185/erzifbed.1093191

Abstract

The ways of producing light with lighting equipment used in agricultural practice are different from each other. Therefore, each method of production generates light with different physical properties. This creates different effects on plants and living creatures. In this study, the effect of light produced by commonly used methods such as incandescence, electric discharge and electroluminescence on T. aestivum L. (wheat) and H. vulgare L. (barley) were analysed. For this purpose, different lighting environments where sources of light with LED, incandescence, sodium vapour, mercury vapour and metal halide discharge were used were created, and all variables except for the sources of light were kept the same. Wheat and barley were grown in these environments, and after the growth and harvesting processes had been completed, wet weight values, linear measurements, amounts of electrolyte leakage, chlorophyll, carotene, SOD (superoxide dismutase) and (CAT) Catalase enzyme activities were determined. Differences between the plants grown under the light parameters were determined by evaluating the data with SPSS. There were statistically significant differences between the data obtained from wheat and barley grown under different lamps.

References

  • Agarwal, S., Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 4, 555-560.
  • Angelini, R., Federico, R. 1989. Histochemical evidence of poliaminoxidation and generation of hydrogenperoxide in the cellwall. Journal of Plant Physiology, 135, 212-217.
  • Aydınşakir, K., Özkan, H., Karagüzel, Ö., Kaya, A. 2005. The effects of different artificial light sources on yield and quality characteristics of goldenrod (Solidago x hybrida ‘tara’). Akdeniz University Journal of the Faculty of Agriculture, 18, 3, 377-384.
  • Cole, L., Hoggatt, L. R., Sterrenberg, J. A., Suttmiller, D. R., Penney, W. R., Clausen, E. C. 2018. A Transient experiment to determine the heat transfer characteristics of a 100 W incandescent light bulb, operating at 48 W. Fluid Mechanics and Heat Transfer: Inexpensive Demonstrations and Laboratory Exercises, 179.
  • Cox, G. 2019. Fundamentals of fluorescence imaging. Pan Stanford.
  • Craver, J. K., Boldt, J. K., Lopez, R. G. 2019. Comparison of Supplemental Lighting Provided by High-pressure Sodium Lamps or Light-emitting Diodes for the Propagation and Finishing of Bedding Plants in a Commercial Greenhouse. Hortscience, 54(1), 52–59.
  • Çetin, M. 2016. Changes in the amount of chlorophyll in some plants of landscape studies, Kastamonu Univ. Journal of Forestry Faculty, 16, 1, 239-245.
  • Demirtaş, M.N., Kırnak H. (2009). Effects of different irrigation systems and intervals on physiological parameters in apricot. Yuzuncu Yıl University Journal of Agricultural Sciences, 19, 2, 79-83.
  • Demirsoy, M., Balkaya, A., Uzun, S. 2016. The Effect of different light sources and artificial colour treatments on eggplant (Solanum melongena L.) seedling growth parameters. Selcuk. Journal of Agricultural Sciences, 3, 2, 238-247.
  • Dupuis, R. D., Krames, M. R. 2008. History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology, 26, 9, 1154-1171.
  • Galvao, V. C., Fankhauser, C. 2015. Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34, 46-53.
  • Gavrilov, S. A., Gavrish, S. V., Puchnina, S. V. 2019. Investigation of processes in glass-ceramic solders of sapphire-niobium seals in gas-discharge lamps. Glass and Ceramics, 1-5.
  • Griffith M., Ala P., Yang DS., Hon WC., Moffatt BA. 1992. Antifreeze protein producedendogenously in winterryeleaves. Plant Physiology, 100, 2, 593-596.
  • Habich, N., Homeyer, I. K. 2018. Untersuchung zur vermeidung der blaulichtanteile bei der hintergrundbeleuchtung von displays unter einsatz von LED-Clustern mit steuerbarem farbspektrum (Doctoral dissertation, Universität Hildesheim).
  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 2, 450-455.
  • Islam, M. A., Kuwar, G., Clarke, J. L., Blystad, D. R., Gislerød, H. R., Olsen, J. E., & Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143.
  • Kandemir, D. 2005. The quantitative effects of temperature and light environment on the growth, development and yield of pepper (Capsicum annuum L.) grown in greenhouses. PhD Thesis, Ondokuz Mayıs University, Institute of Science and Technology, Samsun.
  • Karlicek, R., Sun, C. C., Zissis, G., Ma, R. (Eds.). 2017. Handbook of advanced lighting technology. Springer.
  • Keddy, P. A. 2017. Plant ecology. Cambridge University Press.
  • Kwok, K.F., Cheng, K.W.E., Ping, D. 2006. General study for design the HID ballasts. 2nd International Conference on Power Electronics Systems and Applications, 182-184. Lister, G. 2018. Gas discharge lamps–a requiem.
  • McCree, K.J. 1973. A Rational approach to light measurements in plant ecology. Current Advances in Plant Science, 3, 4, 39-43.
  • Mitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Bourget, C. M. 2015. Light-emitting diodes in horticulture. Horticultural Reviews, 43, 1-87.
  • Nikoudel, F., Mahdavinejad, M., Vazifehdan, J. 2018. Nocturnal architecture of buildings: interaction of exterior lighting and visual beauty. Light & Engineering, 26, 1.
  • Ohasi-Kaneko K., Takase M., Kon N., Fujiwara K., Kurata K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology, 45, 189-198.
  • Osma, E., Ilhan, V., Yalçın, İ. E. 2014. Heavy metals accumulation causes toxicological effects in aquatic Typha domingensis Pers. Brazilian Journal of Botany, 37, 4, 461-467.
  • Osma, E., Cigir, Y., Karnjanapiboonwong, A., Anderson, TA. 2018. Evaluation of selected pharmaceuticals on plant stress markers in wheat. International Journal of Environmental Research, 12, 179–188
  • Peña-García, A., & Sędziwy, A. 2019. Optimizing lighting of rural roads and protected areas with white light: a compromise among light pollution, energy savings, and visibility. Leukos, 1-10.
  • Ponce-Silva, M., Aqui, J. A., Osorio, R., & Lozoya-Ponce, R. E. 2018. Starting circuit adapted to stabilize hid lamps and reducing the acoustic resonances. IEEE Transactions on Power Electronics.
Year 2022, Volume: 15 Issue: 3, 916 - 930, 30.12.2022
https://doi.org/10.18185/erzifbed.1093191

Abstract

References

  • Agarwal, S., Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 4, 555-560.
  • Angelini, R., Federico, R. 1989. Histochemical evidence of poliaminoxidation and generation of hydrogenperoxide in the cellwall. Journal of Plant Physiology, 135, 212-217.
  • Aydınşakir, K., Özkan, H., Karagüzel, Ö., Kaya, A. 2005. The effects of different artificial light sources on yield and quality characteristics of goldenrod (Solidago x hybrida ‘tara’). Akdeniz University Journal of the Faculty of Agriculture, 18, 3, 377-384.
  • Cole, L., Hoggatt, L. R., Sterrenberg, J. A., Suttmiller, D. R., Penney, W. R., Clausen, E. C. 2018. A Transient experiment to determine the heat transfer characteristics of a 100 W incandescent light bulb, operating at 48 W. Fluid Mechanics and Heat Transfer: Inexpensive Demonstrations and Laboratory Exercises, 179.
  • Cox, G. 2019. Fundamentals of fluorescence imaging. Pan Stanford.
  • Craver, J. K., Boldt, J. K., Lopez, R. G. 2019. Comparison of Supplemental Lighting Provided by High-pressure Sodium Lamps or Light-emitting Diodes for the Propagation and Finishing of Bedding Plants in a Commercial Greenhouse. Hortscience, 54(1), 52–59.
  • Çetin, M. 2016. Changes in the amount of chlorophyll in some plants of landscape studies, Kastamonu Univ. Journal of Forestry Faculty, 16, 1, 239-245.
  • Demirtaş, M.N., Kırnak H. (2009). Effects of different irrigation systems and intervals on physiological parameters in apricot. Yuzuncu Yıl University Journal of Agricultural Sciences, 19, 2, 79-83.
  • Demirsoy, M., Balkaya, A., Uzun, S. 2016. The Effect of different light sources and artificial colour treatments on eggplant (Solanum melongena L.) seedling growth parameters. Selcuk. Journal of Agricultural Sciences, 3, 2, 238-247.
  • Dupuis, R. D., Krames, M. R. 2008. History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology, 26, 9, 1154-1171.
  • Galvao, V. C., Fankhauser, C. 2015. Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34, 46-53.
  • Gavrilov, S. A., Gavrish, S. V., Puchnina, S. V. 2019. Investigation of processes in glass-ceramic solders of sapphire-niobium seals in gas-discharge lamps. Glass and Ceramics, 1-5.
  • Griffith M., Ala P., Yang DS., Hon WC., Moffatt BA. 1992. Antifreeze protein producedendogenously in winterryeleaves. Plant Physiology, 100, 2, 593-596.
  • Habich, N., Homeyer, I. K. 2018. Untersuchung zur vermeidung der blaulichtanteile bei der hintergrundbeleuchtung von displays unter einsatz von LED-Clustern mit steuerbarem farbspektrum (Doctoral dissertation, Universität Hildesheim).
  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 2, 450-455.
  • Islam, M. A., Kuwar, G., Clarke, J. L., Blystad, D. R., Gislerød, H. R., Olsen, J. E., & Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143.
  • Kandemir, D. 2005. The quantitative effects of temperature and light environment on the growth, development and yield of pepper (Capsicum annuum L.) grown in greenhouses. PhD Thesis, Ondokuz Mayıs University, Institute of Science and Technology, Samsun.
  • Karlicek, R., Sun, C. C., Zissis, G., Ma, R. (Eds.). 2017. Handbook of advanced lighting technology. Springer.
  • Keddy, P. A. 2017. Plant ecology. Cambridge University Press.
  • Kwok, K.F., Cheng, K.W.E., Ping, D. 2006. General study for design the HID ballasts. 2nd International Conference on Power Electronics Systems and Applications, 182-184. Lister, G. 2018. Gas discharge lamps–a requiem.
  • McCree, K.J. 1973. A Rational approach to light measurements in plant ecology. Current Advances in Plant Science, 3, 4, 39-43.
  • Mitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Bourget, C. M. 2015. Light-emitting diodes in horticulture. Horticultural Reviews, 43, 1-87.
  • Nikoudel, F., Mahdavinejad, M., Vazifehdan, J. 2018. Nocturnal architecture of buildings: interaction of exterior lighting and visual beauty. Light & Engineering, 26, 1.
  • Ohasi-Kaneko K., Takase M., Kon N., Fujiwara K., Kurata K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology, 45, 189-198.
  • Osma, E., Ilhan, V., Yalçın, İ. E. 2014. Heavy metals accumulation causes toxicological effects in aquatic Typha domingensis Pers. Brazilian Journal of Botany, 37, 4, 461-467.
  • Osma, E., Cigir, Y., Karnjanapiboonwong, A., Anderson, TA. 2018. Evaluation of selected pharmaceuticals on plant stress markers in wheat. International Journal of Environmental Research, 12, 179–188
  • Peña-García, A., & Sędziwy, A. 2019. Optimizing lighting of rural roads and protected areas with white light: a compromise among light pollution, energy savings, and visibility. Leukos, 1-10.
  • Ponce-Silva, M., Aqui, J. A., Osorio, R., & Lozoya-Ponce, R. E. 2018. Starting circuit adapted to stabilize hid lamps and reducing the acoustic resonances. IEEE Transactions on Power Electronics.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Şahin 0000-0003-2284-8507

Elçin Kılıç 0000-0002-2873-1564

Etem Osma 0000-0002-5250-8194

Early Pub Date December 27, 2022
Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 15 Issue: 3

Cite

APA Şahin, M., Kılıç, E., & Osma, E. (2022). The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan University Journal of Science and Technology, 15(3), 916-930. https://doi.org/10.18185/erzifbed.1093191